937 resultados para CMS detectors
Resumo:
As proteínas são moléculas essenciais para aos organismos animais, devendo, portanto, estar presentes na alimentação em quantidades adequadas. Além do aspecto quantitativo deve-se levar em conta o aspecto qualitativo, isto é, seu valor nutricional, que dependerá de sua composição, digestibilidade, biodisponibilidade de aminoácidos essenciais, ausência de toxicidade e de fatores antinutricionais. O objetivo deste trabalho foi avaliar a digestibilidade in vivo, o escore químico de aminoácidos (EQ) e o escore químico de aminoácido corrigido pela digestibilidade protéica (PDCAAS) das seguintes fontes de proteína: carne de rã sem osso, carne de rã com osso, carne de rã mecanicamente separada (CMS), carne bovina, ovo em pó, caseína, trigo, milho, soja convencional, soja isenta de inibidor de tripsina Kunitz e de lipoxigenases (soja KTI-LOX-), proteína texturizada de soja (PTS) e feijão. As proteínas de origem animal apresentaram maiores valores de digestibilidade que as de origem vegetal. Carne de rã sem osso apresentou a proteína com maior digestibilidade protéica de todas as proteínas estudadas, não diferindo, entretanto, da caseína, CMS, carne bovina e rã com osso. Das proteínas de origem animal, a do ovo em pó foi aquela que apresentou menor digestibilidade protéica. Nenhuma das proteínas de origem animal apresentou aminoácidos essenciais limitantes quando comparadas com o padrão da FAO/WHO. Feijão, soja convencional, soja KTI-LOX- e PTS, tiveram os aminoácidos sulfurados (metionina+cisteína) como limitantes. Enquanto que para trigo e milho, o aminoácido mais limitante foi a lisina. Soja KTI-LOX- e PTS apresentaram valores de PDCAAS superiores aos da soja convencional, mostrando uma possível elevação na qualidade protéica da soja melhorada geneticamente e da soja processada.
Resumo:
Object detection is a fundamental task of computer vision that is utilized as a core part in a number of industrial and scientific applications, for example, in robotics, where objects need to be correctly detected and localized prior to being grasped and manipulated. Existing object detectors vary in (i) the amount of supervision they need for training, (ii) the type of a learning method adopted (generative or discriminative) and (iii) the amount of spatial information used in the object model (model-free, using no spatial information in the object model, or model-based, with the explicit spatial model of an object). Although some existing methods report good performance in the detection of certain objects, the results tend to be application specific and no universal method has been found that clearly outperforms all others in all areas. This work proposes a novel generative part-based object detector. The generative learning procedure of the developed method allows learning from positive examples only. The detector is based on finding semantically meaningful parts of the object (i.e. a part detector) that can provide additional information to object location, for example, pose. The object class model, i.e. the appearance of the object parts and their spatial variance, constellation, is explicitly modelled in a fully probabilistic manner. The appearance is based on bio-inspired complex-valued Gabor features that are transformed to part probabilities by an unsupervised Gaussian Mixture Model (GMM). The proposed novel randomized GMM enables learning from only a few training examples. The probabilistic spatial model of the part configurations is constructed with a mixture of 2D Gaussians. The appearance of the parts of the object is learned in an object canonical space that removes geometric variations from the part appearance model. Robustness to pose variations is achieved by object pose quantization, which is more efficient than previously used scale and orientation shifts in the Gabor feature space. Performance of the resulting generative object detector is characterized by high recall with low precision, i.e. the generative detector produces large number of false positive detections. Thus a discriminative classifier is used to prune false positive candidate detections produced by the generative detector improving its precision while keeping high recall. Using only a small number of positive examples, the developed object detector performs comparably to state-of-the-art discriminative methods.
Resumo:
Com o objetivo de acompanhar a estabilidade físico-química e microbiológica da carne mecanicamente separada (CMS) de diferentes origens e estocada durante 99 dias a -18 °C, foi realizada prévia mistura de conservante (nitrito de sódio) e antioxidante (eritorbato de sódio) em CMS obtida de duas linhagens de aves: galinhas matrizes de corte e galinhas poedeiras comerciais brancas. Na CMS de cada linhagem foram realizados três diferentes tratamentos: 1) controle (sem aditivos); 2) adição de 150 ppm de nitrito; e 3) adição de 150 ppm de nitrito e 500 ppm de eritorbato. Os resultados encontrados demonstraram que a adição de nitrito isoladamente não impediu a oxidação lipídica, avaliada através do índice de TBARS, nem a alteração na cor, avaliada em colorímetro. Por outro lado, a adição de nitrito juntamente com eritorbato foi efetiva na redução dos problemas de oxidação lipídica na CMS de galinhas matrizes, e em menor grau, na CMS de poedeiras. A adição de nitrito e eritorbato na CMS também melhorou a preservação da cor vermelha desejável (a*) ao longo do tempo. A avaliação da estabilidade microbiológica da CMS, realizada no primeiro e último dia de estocagem congelada, para microrganismos mesófilos, Escherichia coli, Staphylococcus aureus, Clostridium perfringens e Pseudomonas spp., e quinzenalmente para microrganismos psicrotróficos, indicou que não houve uma variação significativa nas contagens em função do tratamento utilizado (diferentes aditivos adicionados). Não foi detectada Salmonella spp. em nenhuma das amostras analisadas. Em função da melhoria da estabilidade oxidativa, recomenda-se a adição de nitrito (150 ppm) e eritorbato (500 ppm) em CMS de galinhas matrizes a ser estocada congelada por um período prolongado.
Resumo:
Meesauuni on osa sulfaattisellutehdasta ja sen kemikaalikiertoa. Se on pyörivä kaltevaan tasoon asetettu rumpu-uuni, joka voi olla jopa 160 metriä pitkä ja halkaisijaltaan 5,5 metriä. Kalkki on kiertävä apukemikaali, jota käytetään soodakattilalta tulevan viherlipeän muuttamiseen valkolipeäksi. Meesauunin tehtävänä on kierrättää kalkki (CaO) uudelleen käytettäväksi kaustisoinnissa syntyneestä meesasta (CaCO3). Meesauunin vaipan konepajavalmistus on prosessina hyvin yksinkertainen, mutta toleranssivaatimukset ovat hyvin tiukat suhteutettuna meesauunin kokoon. Vaippalohkojen valmistus on siirtynyt halpatyövoiman maihin lähelle loppukäyttäjiä, joten vaatimukset piirustusten laadulle, valmistukselle, ohjeille ja tarkastamiselle ovat lisääntyneet. Uunin vaippa toimitetaan asennuspaikalle useassa lohkossa ja jokainen vaippalohko on tarkastettava ennen toimitusta. Virheellisten vaippalohkojen siirtyminen asennuspaikalle on estettävä. Työn tavoitteena oli parantaa meesauunin vaippalohkojen konepajavalmistuksen laaduntarkastusta. Tässä työssä tutkitaan mittausmenetelmiä vaippalohkojen geometrian mittaamiseen. Tärkeimmät uunin toiminnallisiin ominaisuuksiin vaikuttavat muototoleranssit vaippalohkoille ovat ympyrämäisyys ja keskiviivan suoruus. Virheet näissä toleransseissa aiheuttavat vaurioita uunin muurauksille ja liian suuria kuormituksia tuennoille. Vaippalohkot on mitattava pyöritysrullaston päällä ja konepajan olosuhteissa, mikä aiheuttaa omat haasteensa. Vaippalohkojen suuret massat ja dimensiot aiheuttavat vaippalohkoihin muodonmuutoksia. Muodonmuutokset täytyy olla hallinnassa, mikäli halutaan käyttää CMS-laitteistoja (Coordinate Measuring System). Meesauunin vaippalohkot ovat mitattavissa radiaalimittauksina tai käyttäen CMS-laitteistoja.
Resumo:
Este estudo teve como objetivo avaliar a influência da lavagem e da adição de eritorbato de sódio e tripolifosfato de sódio na estabilidade de Carne Mecanicamente Separada (CMS) de tilápia de Nilo (Oreochromis niloticus) durante 6 meses de armazenamento a -18 ºC. A CMS obtida por meio de máquina separadora de carne e ossos foi dividida em quatro tratamentos (CMS lavada com e sem aditivos, e CMS não lavada com e sem aditivos) e mantida sob congelamento a -18 ºC, por 180 dias. A estabilidade foi avaliada por meio de análises microbiológicas e determinações de nitrogênio não proteico (NNP), bases nitrogenadas voláteis (BNV), substâncias reativas ao ácido tiobarbitúrico (TBARS), pH e drip (perda de água no descongelamento). O processo de lavagem causou redução de aproximadamente 41, 44 e 66% nos teores de proteína bruta, lipídios e cinzas, respectivamente, reduzindo também os valores iniciais de NNP, BNV e TBARS. Durante o armazenamento, foram observados aumentos (p < 0,05) nos teores de NNP, BNV e pH em praticamente todos os tratamentos, exceto na CMS lavada com aditivos, que não apresentou aumentos significativos nos teores de NNP e pH. O uso de aditivos nas CMS diminuiu o drip ao longo do armazenamento, mas não alterou (p > 0,05) os teores de TBARS. Os parâmetros microbiológicos avaliados não ultrapassaram os limites permitidos pela legislação. As CMS permaneceram estáveis e em boas condições de utilização, independentemente da inclusão de aditivo, sendo viável sua estocagem a -18 ºC por 180 dias.
Resumo:
The coating of papayas with Cassava Starch (CS) and carboxymethyl starch (CMS) is an alternative to extend the shelf life of these fruits. This study evaluated the effect of the three different levels of CS and CMS (1, 3, and 5%) on sensory characteristics of papayas during storage. Nine selected and trained assessors evaluated 13 sensory attributes using the Multiple Comparison Test. The appearance and flavor attributes of the papayas treated with CS and CMS were compared to the control or reference sample (R - fruit without coating) using a nine-point scale, which varied from 1: less intense than R; 5: equal to R; 9: more intense than R. The samples were coded with three digit numbers and evaluated with repetition by a panel of assessors. In general, appearance was more affected by the coatings than flavor. Fruits coated with 3 and 5% of both coatings kept the green color longer than the other coatings concentrations, and at 5% the color of the fruits was less uniform on the last evaluation day. The 3 and 5% CS coating gave greater brightness to the fruits. 5% CMS favored the presence of fungi and damaged the fruit surface at the 14th day of storage. The CS coating at 5% presented peeled surface during all experimental time. Changes in fruits flavor were perceived at the 12th and 14th days of storage. A less characteristic flavor and a bitter taste were noticed in the fruits coated with CS and CMS at 5% at the 12th day of storage.
Resumo:
A method using L-cysteine for the determination of arsenous acid (As(III)), arsenic acid (As(V)), monomethylarsonic acid (MMAA), and dimethylarsinic acid (DMAA) by hydride generation was demonstrated. The instrument used was a d.c. plasma atomic emission spectrometer (OCP-AES). Complete recovery was reported for As(III), As(V), and DMAA while 86% recovery was reported for MMAA. Detection limits were determined, as arsenic for the species listed previously, to be 1.2, 0.8, 1.1, and 1.0 ngemL-l, respectively. Precision values, at 50 ngemL-1 arsenic concentration, were f.80/0, 2.50/0, 2.6% and 2.6% relative standard deviation, respectively. The L-cysteine reagent was compared directly with the conventional hydride generation technique which uses a potassium iodide-hydrochloric acid medium. Recoveries using L-cysteine when compared with the conventional method provided the following results: similar recoveries were obtained for As(III), slightly better recoveries were obtained for As(V) and MMAA, and significantly better recoveries for DMAA. In addition, tall and sharp peak shapes were observed for all four species when using L-cysteine. The arsenic speciation method involved separation by ion exchange .. high perfonnance liquid chromatography (HPLC) with on-line hydride generation using the L.. cysteine reagent and measurement byOCP-AES. Total analysis time per sample was 12 min while the time between the start of subsequent runs was approximately 20 min. A binary . gradient elution program, which incorporated the following two eluents: 0.01 and 0.5 mM tri.. sodium citrate both containing 5% methanol (v/v) and both at a pH of approximately 9, was used during the separation by HPLC. Recoveries of the four species which were measured as peak area, and were normalized against As(III), were 880/0, 290/0, and 40% for DMAA, MMAA and As(V), respectively. Resolution factors between adjacent analyte peaks of As(III) and DMAA was 1.1; DMAA and MMAA was 1.3; and MMAA and As(V) was 8.6. During the arsenic speciation study, signals from the d.c. plasma optical system were measured using a new photon-signal integrating device. The_new photon integrator developed and built in this laboratory was based on a previously published design which was further modified to reflect current available hardware. This photon integrator was interfaced to a personal computer through an AID convertor. The .photon integrator has adjustable threshold settings and an adjustable post-gain device.
Resumo:
The Beckman Helium Discharge Detector has been found to be sensitive to the fixed gases oxygen, nitrogen, and hydrogen at detection levels 10-100 times more sensitive than possible with a Bow-Mac Thermal Conductivity Detector. Detection levels o~ approximately 1.9 E-4 ~ v/v oxygen, 3.1 E-4 ~ v/v nitrogen, and 3.0 E-3 ~ v/v hydrogen are estimated. Response of the Helium Discharge Detector was not linear, but is useable for quantitation over limited ranges of concentration using suitably prepared working standards. Cleanliness of the detector discharge electrodes and purity of the helium carrier and discharge gas were found to be critical to the operation of the detector. Higher sensitivities of the Helium Discharge Detector may be possible by the design and installation of a sensitive, solid-state electrometer.
Resumo:
A new Ultra-High Vacuum (UHV) reflectance spectrometer was successfully designed, making use of a Janis Industries ST-400 sample cryostat, IR Labs bolometer, and Briiker IFS 66 v/S spectrometer. Two of the noteworthy features include an in situ gold evaporator and internal reference path, both of which allow for the experiment to progress with a completely undisturbed sample position. As tested, the system was designed to operate between 4.2 K and 325 K over a frequency range of 60 - 670 cm~^. This frequency range can easily be extended through the addition of appUcable detectors. Tests were performed on SrTiOa, a highly ionic incipient ferroelectric insulator with a well known reflectance. The presence and temperatmre dependence of the lowest frequency "soft" mode were measured, as was the presence of the other two infrared modes. During the structural phase transition from cubic to tetragonal perovskite, the splitting of the second phonon mode was also observed. All of the collected data indicate good agreement with previous measurements, with a minor discrepency between the actual and recorded sample temperatures.
Resumo:
[Tesis] (Maestro en Enseñanza de las Ciencias con Especialidad en Química) U.A.N.L.
Resumo:
[Tesis] (Maestro en Ciencias con Especialidad en Microbiología) U.A.N.L.
Resumo:
UANL
Resumo:
UANL
Resumo:
Tesis (Doctor en Ciencias con Especialidad en Entomología) U.A.N.L.
Resumo:
Les tâches de vision artificielle telles que la reconnaissance d’objets demeurent irrésolues à ce jour. Les algorithmes d’apprentissage tels que les Réseaux de Neurones Artificiels (RNA), représentent une approche prometteuse permettant d’apprendre des caractéristiques utiles pour ces tâches. Ce processus d’optimisation est néanmoins difficile. Les réseaux profonds à base de Machine de Boltzmann Restreintes (RBM) ont récemment été proposés afin de guider l’extraction de représentations intermédiaires, grâce à un algorithme d’apprentissage non-supervisé. Ce mémoire présente, par l’entremise de trois articles, des contributions à ce domaine de recherche. Le premier article traite de la RBM convolutionelle. L’usage de champs réceptifs locaux ainsi que le regroupement d’unités cachées en couches partageant les même paramètres, réduit considérablement le nombre de paramètres à apprendre et engendre des détecteurs de caractéristiques locaux et équivariant aux translations. Ceci mène à des modèles ayant une meilleure vraisemblance, comparativement aux RBMs entraînées sur des segments d’images. Le deuxième article est motivé par des découvertes récentes en neurosciences. Il analyse l’impact d’unités quadratiques sur des tâches de classification visuelles, ainsi que celui d’une nouvelle fonction d’activation. Nous observons que les RNAs à base d’unités quadratiques utilisant la fonction softsign, donnent de meilleures performances de généralisation. Le dernière article quand à lui, offre une vision critique des algorithmes populaires d’entraînement de RBMs. Nous montrons que l’algorithme de Divergence Contrastive (CD) et la CD Persistente ne sont pas robustes : tous deux nécessitent une surface d’énergie relativement plate afin que leur chaîne négative puisse mixer. La PCD à "poids rapides" contourne ce problème en perturbant légèrement le modèle, cependant, ceci génère des échantillons bruités. L’usage de chaînes tempérées dans la phase négative est une façon robuste d’adresser ces problèmes et mène à de meilleurs modèles génératifs.