984 resultados para CHLOROPLAST ULTRASTRUCTURE
Resumo:
Résumé L'eau est souvent considérée comme une substance ordinaire puisque elle est très commune dans la nature. En fait elle est la plus remarquable de toutes les substances. Sans l'eau la vie sur la terre n'existerait pas. L'eau représente le composant majeur de la cellule vivante, formant typiquement 70 à 95% de la masse cellulaire et elle fournit un environnement à d'innombrables organismes puisque elle couvre 75% de la surface de terre. L'eau est une molécule simple faite de deux atomes d'hydrogène et un atome d'oxygène. Sa petite taille semble en contradiction avec la subtilité de ses propriétés physiques et chimiques. Parmi celles-là, le fait que, au point triple, l'eau liquide est plus dense que la glace est particulièrement remarquable. Malgré son importance particulière dans les sciences de la vie, l'eau est systématiquement éliminée des spécimens biologiques examinés par la microscopie électronique. La raison en est que le haut vide du microscope électronique exige que le spécimen biologique soit solide. Pendant 50 ans la science de la microscopie électronique a adressé ce problème résultant en ce moment en des nombreuses techniques de préparation dont l'usage est courrant. Typiquement ces techniques consistent à fixer l'échantillon (chimiquement ou par congélation), remplacer son contenu d'eau par un plastique doux qui est transformé à un bloc rigide par polymérisation. Le bloc du spécimen est coupé en sections minces (denviron 50 nm) avec un ultramicrotome à température ambiante. En général, ces techniques introduisent plusieurs artefacts, principalement dû à l'enlèvement d'eau. Afin d'éviter ces artefacts, le spécimen peut être congelé, coupé et observé à basse température. Cependant, l'eau liquide cristallise lors de la congélation, résultant en une importante détérioration. Idéalement, l'eau liquide est solidifiée dans un état vitreux. La vitrification consiste à refroidir l'eau si rapidement que les cristaux de glace n'ont pas de temps de se former. Une percée a eu lieu quand la vitrification d'eau pure a été découverte expérimentalement. Cette découverte a ouvert la voie à la cryo-microscopie des suspensions biologiques en film mince vitrifié. Nous avons travaillé pour étendre la technique aux spécimens épais. Pour ce faire les échantillons biologiques doivent être vitrifiés, cryo-coupées en sections vitreuse et observées dans une cryo-microscope électronique. Cette technique, appelée la cryo- microscopie électronique des sections vitrifiées (CEMOVIS), est maintenant considérée comme étant la meilleure façon de conserver l'ultrastructure de tissus et cellules biologiques dans un état très proche de l'état natif. Récemment, cette technique est devenue une méthode pratique fournissant des résultats excellents. Elle a cependant, des limitations importantes, la plus importante d'entre elles est certainement dû aux artefacts de la coupe. Ces artefacts sont la conséquence de la nature du matériel vitreux et le fait que les sections vitreuses ne peuvent pas flotter sur un liquide comme c'est le cas pour les sections en plastique coupées à température ambiante. Le but de ce travail a été d'améliorer notre compréhension du processus de la coupe et des artefacts de la coupe. Nous avons ainsi trouvé des conditions optimales pour minimiser ou empêcher ces artefacts. Un modèle amélioré du processus de coupe et une redéfinitions des artefacts de coupe sont proposés. Les résultats obtenus sous ces conditions sont présentés et comparés aux résultats obtenus avec les méthodes conventionnelles. Abstract Water is often considered to be an ordinary substance since it is transparent, odourless, tasteless and it is very common in nature. As a matter of fact it can be argued that it is the most remarkable of all substances. Without water life on Earth would not exist. Water is the major component of cells, typically forming 70 to 95% of cellular mass and it provides an environment for innumerable organisms to live in, since it covers 75% of Earth surface. Water is a simple molecule made of two hydrogen atoms and one oxygen atom, H2O. The small size of the molecule stands in contrast with its unique physical and chemical properties. Among those the fact that, at the triple point, liquid water is denser than ice is especially remarkable. Despite its special importance in life science, water is systematically removed from biological specimens investigated by electron microscopy. This is because the high vacuum of the electron microscope requires that the biological specimen is observed in dry conditions. For 50 years the science of electron microscopy has addressed this problem resulting in numerous preparation techniques, presently in routine use. Typically these techniques consist in fixing the sample (chemically or by freezing), replacing its water by plastic which is transformed into rigid block by polymerisation. The block is then cut into thin sections (c. 50 nm) with an ultra-microtome at room temperature. Usually, these techniques introduce several artefacts, most of them due to water removal. In order to avoid these artefacts, the specimen can be frozen, cut and observed at low temperature. However, liquid water crystallizes into ice upon freezing, thus causing severe damage. Ideally, liquid water is solidified into a vitreous state. Vitrification consists in solidifying water so rapidly that ice crystals have no time to form. A breakthrough took place when vitrification of pure water was discovered. Since this discovery, the thin film vitrification method is used with success for the observation of biological suspensions of. small particles. Our work was to extend the method to bulk biological samples that have to be vitrified, cryosectioned into vitreous sections and observed in cryo-electron microscope. This technique is called cryo-electron microscopy of vitreous sections (CEMOVIS). It is now believed to be the best way to preserve the ultrastructure of biological tissues and cells very close to the native state for electron microscopic observation. Since recently, CEMOVIS has become a practical method achieving excellent results. It has, however, some sever limitations, the most important of them certainly being due to cutting artefacts. They are the consequence of the nature of vitreous material and the fact that vitreous sections cannot be floated on a liquid as is the case for plastic sections cut at room temperature. The aim of the present work has been to improve our understanding of the cutting process and of cutting artefacts, thus finding optimal conditions to minimise or prevent these artefacts. An improved model of the cutting process and redefinitions of cutting artefacts are proposed. Results obtained with CEMOVIS under these conditions are presented and compared with results obtained with conventional methods.
Resumo:
Résumé Les mousses sont la plus ancienne lignée de plantes terrestres et leur longue évolution a été accompagnée par des tendances à la simplification des caractères morphologiques. Ce phénomène a quelque peu compliqué les reconstructions phylogénétiques basées sur la morphologie. Les analyses génétiques ont permis de donner de nouvelles informations dans le cadre des analyses phylogénétiques et une réévaluation de certains caractères morphologiques. La plupart des études combinant les données morphologiques et moléculaires ne concernent que des niveaux systématiques élevés comme l'ordre ou la famille et très peu considèrent le niveau du genre. La présente étude tend à tester les relations phylogénétiques du genre Grimmia à l'aide d'une combinaison de caractères morphologiques et moléculaires. Les 40 espèces de Grimmia utilisées dans la première partie de cette étude représentent la majorité des espèces trouvées en Eurasie, un des centres de diversification du genre. Lors de l'analyse morphologique, 52 caractères morphologiques/anatomiques (33 du gamétophyte et 19 du sporophyte) ont été numérisés. Malgré le peu de support statistique des arbres, la topologie des arbres est stable. Les Grimmia, comme décrit précédemment, sont paraphylétiques. Trois clades, correspondant respectivement aux sous-genres Rhabdogrimmia Limpr, Litoneuron I.Hagen et Gasterogrimmia Schimp. sont présents, tandis que le restant des taxons appartenant aux Grimmia forment un groupe non-résolu et indistinct des autres Grimmiaceae. Les séquences chloroplastiques trnL-trnF et rps4 combinés à la morphologie ont été ensuite utilisés pour reconstruire la phylogénie des Grimmia. Les arbres obtenus soutiennent la monophylie des Grimmiaceae tandis que les Grimmia, sont paraphylétiques. Deux clades principaux correspondant aux "Rhabdogrimmia" et aux "Grimmia" se détachent. Seules les espèces de "Rhabdogrimmia" produisent des gemmules foliaires (reproduction asexuée). Dans une étude considèrant 91 séquences trrIL-trnF les espèces appartenant aux "Rhabdogrimrnia" (reproduction asexuée essentiellement) ont des variabilités intraspécifique très faible et interspécifique relativement élevée tandis que les "Grimmia" possèdent la tendance inverse (plus de reproduction sexuée). Summary The mosses are a very old land plant lineage and their long evolutionary history has been accompanied by a trend of morphological character simplifications. This phenomenon has somewhat complicated morphological based phylogenetic reconstructions. Genetic analyses have provided new insights for phylogenetic studies, and have allowed morphological data to be re¬evaluated. Most of the studies combining morphological and molecular data have concerned the higher systematic levels of order and family and only have few considered the genus. The present study aims to test the phylogenetic relationships of the genus Grimmia using a combination of morphological and molecular characters. The 40 chosen Grimmia species represent the majority of those found in Eurasia, one diversification centers of the genus. For the morphological analysis, 52 morphological/anatomical characters (33 gametophyte and 19 sporophyte characters) were numerized. Although the internal statistical support was relatively low, the tree topologies were stable. Grimmia as currently defined was found to be paraphyletic. Three subclades, corresponding to the subgenera Rhabdogrimmia Limpr., Litoneuron I.Hagen, and Gasterogrimmia Schimp. were observed in the trees, while the reminder of the Grimmia species formed an unresolved group indistinct from other Grimmiaceae. Chloroplast (trnL-trnF and rps4) DNA sequences combined with morphology were used to reconstruct the phylogeny of Grimmia. The resulting trees supported the monophyly of Grimmiaceae and that the genus Grimmia, as currently defined, as paraphyletic. Two main clades were resolved corresponding to "Rhabdogrimmia" and "Grimmia". The species belonging to "Rhabdogrimmia" produce foliar-gemmae (asexual reproduction). In a study using 91 sequences of trnL-trnF,"Rhabdogrimmia" species (mainly asexual reproduction) have very low intraspecific variability and high interspecific variability whereas the "Grimmia" species possess the inverse tendency.
Resumo:
Spermatological characters of the liver fluke Mediogonimus jourdanei Mas-Coma et Rocamora, 1978 were studied by means of transmission and scanning electron microscopy. Spermiogenesis begins with the formation of the differentiation zone containing two centrioles associated with striated rootlets and an intercentriolar body. These two centrioles originate two free flagella that undergo a 90 degrees rotation before fusing with the median cytoplasmic process. Both nuclear and mitochondrial migrations toward the median cytoplasmic process occur before the proximodistal fusion of flagella. Finally, the constriction of the ring of arched membranes gives rise to the young spermatozoon. The mature sperm of M. jourdanei measures about 260 microm and presents two axonemes of different lengths with the typical pattern of the Trepaxonemata, two bundles of parallel cortical microtubules, one mitochondrion, a nucleus and granules of glycogen. An analysis of all the microphalloidean species studied to date emphasised some differences in certain characters found in Maritrema linguilla Jägerskiöld, 1908 and Ganeo tigrinum Mehra et Negi, 1928 in comparison to those in the remaining microphalloideans. The presence and variability of such ultrastructural characters according to family, superfamily or order have led several authors to propose their use in the analysis of trematode relationships and phylogeny. Therefore, apart from producing new data on the family Prosthogonimidae, the present study also compares the spermatological organization of M jourdanei with other available ultrastructural studies focusing on the Microphalloidea.
Resumo:
BACKGROUND: An important signal transduction pathway in plant defence depends on the accumulation of salicylic acid (SA). SA is produced in chloroplasts and the multidrug and toxin extrusion transporter ENHANCED DISEASE SUSCEPTIBILITY5 (EDS5; At4g39030) is necessary for the accumulation of SA after pathogen and abiotic stress. EDS5 is localized at the chloroplast and functions in transporting SA from the chloroplast to the cytoplasm. EDS5 has a homologue called EDS5H (EDS5 HOMOLOGUE; At2g21340) but its relationship to EDS5 has not been described and its function is not known. RESULTS: EDS5H exhibits about 72% similarity and 59% identity to EDS5. In contrast to EDS5 that is induced after pathogen inoculation, EDS5H was constitutively expressed in all green tissues, independently of pathogen infection. Both transporters are located at the envelope of the chloroplast, the compartment of SA biosynthesis. EDS5H is not involved with the accumulation of SA after inoculation with a pathogen or exposure to UV stress. A phylogenetic analysis supports the hypothesis that EDS5H may be an H(+)/organic acid antiporter like EDS5. CONCLUSIONS: The data based on genetic and molecular studies indicate that EDS5H despite its homology to EDS5 does not contribute to pathogen-induced SA accumulation like EDS5. EDS5H most likely transports related substances such as for example phenolic acids, but unlikely SA.
Resumo:
Arabidopsis (Arabidopsis thaliana) leaf trichomes are single-cell structures with a well-studied development, but little is understood about their function. Developmental studies focused mainly on the early shaping stages, and little attention has been paid to the maturation stage. We focused on the EXO70H4 exocyst subunit, one of the most up-regulated genes in the mature trichome. We uncovered EXO70H4-dependent development of the secondary cell wall layer, highly autofluorescent and callose rich, deposited only in the upper part of the trichome. The boundary is formed between the apical and the basal parts of mature trichome by a callose ring that is also deposited in an EXO70H4-dependent manner. We call this structure the Ortmannian ring (OR). Both the secondary cell wall layer and the OR are absent in the exo70H4 mutants. Ecophysiological aspects of the trichome cell wall thickening include interference with antiherbivore defense and heavy metal accumulation. Ultraviolet B light induces EXO70H4 transcription in a CONSTITUTIVE PHOTOMORPHOGENIC1-dependent way, resulting in stimulation of trichome cell wall thickening and the OR biogenesis. EXO70H4-dependent trichome cell wall hardening is a unique phenomenon, which may be conserved among a variety of the land plants. Our analyses support a concept that Arabidopsis trichome is an excellent model to study molecular mechanisms of secondary cell wall deposition.
Resumo:
Spermiogenesis in the proteocephalidean cestode Barsonella lafoni de Chambrier et al., 2009 shows typical characteristics of the type I spermiogenesis. These include the formation of distal cytoplasmic protrusions forming the differentiation zones, lined by cortical microtubules and containing two centrioles. An electron-dense material is present in the apical region of the differentiation zone during the early stages of spermiogenesis. Each centriole is associated to a striated rootlet, being separated by an intercentriolar body. Two free and unequal flagella originate from the centrioles and develop on the lateral sides of the differentiation zone. A median cytoplasmic process is formed between the flagella. Later these flagella rotate, become parallel to the median cytoplasmic process and finally fuse proximodistally with the latter. It is interesting to note that both flagellar growth and rotation are asynchronous. Later, the nucleus enlarges and penetrates into the spermatid body. Finally, the ring of arching membranes is strangled and the young spermatozoon is detached from the residual cytoplasm. The mature spermatozoon presents two axonemes of the 9 +"1" trepaxonematan pattern, crested body, parallel nucleus and cortical microtubules, and glycogen granules. Thus, it corresponds to the type II spermatozoon, described in almost all Proteocephalidea. The anterior extremity of the gamete is characterized by the presence of an apical cone surrounded by the lateral projections of the crested body. An arc formed by some thick and parallel cortical microtubules appears at the level of the centriole. They surround the centriole and later the first axoneme. This arc of electron-dense microtubules disorganizes when the second axoneme appears, and then two parallel rows of thin cortical microtubules are observed. The posterior extremity of the male gamete exhibits some cortical microtubules. This type of posterior extremity has never been described in proteocephalidean cestodes. The ultrastructural features of the spermatozoon/spermiogenesis of the Proteocephalidea species are analyzed and compared.
Resumo:
Anthracnose, caused by Colletotrichum gloeosporioides, produces brown lesions on guava fruits, causing severe losses on postharvest. In this study, the infection and colonization of guava fruits by C. gloeosporioides has been examined using scanning and transmission electron microscopy. Fruits at the physiologically mature stage were inoculated with a 10(5) conidia/mL spore suspension. Afterward, fruits were incubated at 25 °C in a wet chamber for periods of 6, 12, 24, 48, 96 and 120 h to allow examination of the infection and colonization process. Conidia germination and appressoria formation occurred six hours after inoculation (h.a.i). Penetration occurred directly via penetration pegs from appressoria, which penetrated the host cuticle 48 h.a.i. Notably, the appressoria did not produce an appressorial cone surrounding the penetration pore. Infection vesicles were found in epidermal cells 96 h.a.i. The same fungal structures were found in epidermal and parenchymal cells of the host 120 h.a.i. Colonization strategy of C. gloeosporioides on guava fruit was intracellular hemibiotrophic.
Resumo:
Spermiogenesis in the proteocephalidean cestode Barsonella lafoni de Chambrier et al., 2009 shows typical characteristics of the type I spermiogenesis. These include the formation of distal cytoplasmic protrusions forming the differentiation zones, lined by cortical microtubules and containing two centrioles. An electron-dense material is present in the apical region of the differentiation zone during the early stages of spermiogenesis. Each centriole is associated to a striated rootlet, being separated by an intercentriolar body. Two free and unequal flagella originate from the centrioles and develop on the lateral sides of the differentiation zone. A median cytoplasmic process is formed between the flagella. Later these flagella rotate, become parallel to the median cytoplasmic process and finally fuse proximodistally with the latter. It is interesting to note that both flagellar growth and rotation are asynchronous. Later, the nucleus enlarges and penetrates into the spermatid body. Finally, the ring of arching membranes is strangled and the young spermatozoon is detached from the residual cytoplasm. The mature spermatozoon presents two axonemes of the 9 +"1" trepaxonematan pattern, crested body, parallel nucleus and cortical microtubules, and glycogen granules. Thus, it corresponds to the type II spermatozoon, described in almost all Proteocephalidea. The anterior extremity of the gamete is characterized by the presence of an apical cone surrounded by the lateral projections of the crested body. An arc formed by some thick and parallel cortical microtubules appears at the level of the centriole. They surround the centriole and later the first axoneme. This arc of electron-dense microtubules disorganizes when the second axoneme appears, and then two parallel rows of thin cortical microtubules are observed. The posterior extremity of the male gamete exhibits some cortical microtubules. This type of posterior extremity has never been described in proteocephalidean cestodes. The ultrastructural features of the spermatozoon/spermiogenesis of the Proteocephalidea species are analyzed and compared.
Resumo:
The scolex of the bothriocephalidean cestode Clestobothrium crassiceps was studied by means of scanning electron microscopy (SEM). The comparative results of various fixation procedures and techniques are presented. The scolex of C. crassiceps is oval to globular and exhibits two deep bothria which appear in the form of two lobes separated by a longitudinal groove. At the apex of the scolex, resembling a beret, an apical disc is present (oval, flattened and with a sinuous edge). Our results are compared with those previously reported in other species of Clestobothrium. This study represents the first report which highlights the presence of an apical disc in the scolex of C. crassiceps. It describes the effects of different procedures applied to our material during preparation and a comparative analysis results obtained using these various methods.
Resumo:
The ultrastructural organization of the spermatozoon of the digenean Hypocreadium caputvadum (Lepocreadioidea: Lepocreadiidae) is described. Live digeneans were collected from Balistes capriscus (Teleostei: Balistidae) from the Gulf of Gabès, Tunisia (Eastern Mediterranean Sea). The mature spermatozoon of H. caputvadum shows several ultrastructural characters such as two axonemes of different lengths exhibiting the classical 9 +"1" trepaxonematan pattern, a nucleus, two mitochondria, granules of glycogen, external ornamentation of the plasma membrane and two bundles of parallel cortical microtubules. Moreover, in the anterior extremity, the second axoneme is partly surrounded by a discontinuous and submembranous layer of electron-dense material. Our study provides new data on the spermatozoon of H. caputvadum in order to improve the understanding of phylogenetic relationships in the Digenea, particularly in the superfamily Lepocreadioidea. In this context, the electron-dense material surrounding one of the axonemes in the anterior spermatozoon extremity constitutes the unique distinguishing ultrastructural character of lepocreadioideans, and it is present in spermatozoa of lepocreadiids, aephnidiogenids and gyliauchenids.
Resumo:
The Annonaceae includes cultivated species of economic interest and represents an important source of information for better understanding the evolution of tropical rainforests. In phylogenetic analyses of DNA sequence data that are used to address evolutionary questions, it is imperative to use appropriate statistical models. Annonaceae are cases in point: Two sister clades, the subfamilies Annonoideae and Malmeoideae, contain the majority of Annonaceae species diversity. The Annonoideae generally show a greater degree of sequence divergence compared to the Malmeoideae, resulting in stark differences in branch lengths in phylogenetic trees. Uncertainty in how to interpret and analyse these differences has led to inconsistent results when estimating the ages of clades in Annonaceae using molecular dating techniques. We ask whether these differences may be attributed to inappropriate modelling assumptions in the phylogenetic analyses. Specifically, we test for (clade-specific) differences in rates of non-synonymous and synonymous substitutions. A high ratio of nonsynonymous to synonymous substitutions may lead to similarity of DNA sequences due to convergence instead of common ancestry, and as a result confound phylogenetic analyses. We use a dataset of three chloroplast genes (rbcL, matK, ndhF) for 129 species representative of the family. We find that differences in branch lengths between major clades are not attributable to different rates of non-synonymous and synonymous substitutions. The differences in evolutionary rate between the major clades of Annonaceae pose a challenge for current molecular dating techniques that should be seen as a warning for the interpretation of such results in other organisms.
Resumo:
The scolex of the bothriocephalidean cestode Clestobothrium crassiceps was studied by means of scanning electron microscopy (SEM). The comparative results of various fixation procedures and techniques are presented. The scolex of C. crassiceps is oval to globular and exhibits two deep bothria which appear in the form of two lobes separated by a longitudinal groove. At the apex of the scolex, resembling a beret, an apical disc is present (oval, flattened and with a sinuous edge). Our results are compared with those previously reported in other species of Clestobothrium. This study represents the first report which highlights the presence of an apical disc in the scolex of C. crassiceps. It describes the effects of different procedures applied to our material during preparation and a comparative analysis results obtained using these various methods.
Resumo:
The ultrastructural organization of the spermatozoon of the digenean Hypocreadium caputvadum (Lepocreadioidea: Lepocreadiidae) is described. Live digeneans were collected from Balistes capriscus (Teleostei: Balistidae) from the Gulf of Gabès, Tunisia (Eastern Mediterranean Sea). The mature spermatozoon of H. caputvadum shows several ultrastructural characters such as two axonemes of different lengths exhibiting the classical 9 +"1" trepaxonematan pattern, a nucleus, two mitochondria, granules of glycogen, external ornamentation of the plasma membrane and two bundles of parallel cortical microtubules. Moreover, in the anterior extremity, the second axoneme is partly surrounded by a discontinuous and submembranous layer of electron-dense material. Our study provides new data on the spermatozoon of H. caputvadum in order to improve the understanding of phylogenetic relationships in the Digenea, particularly in the superfamily Lepocreadioidea. In this context, the electron-dense material surrounding one of the axonemes in the anterior spermatozoon extremity constitutes the unique distinguishing ultrastructural character of lepocreadioideans, and it is present in spermatozoa of lepocreadiids, aephnidiogenids and gyliauchenids.
Resumo:
BACKGROUND: The historical orogenesis and associated climatic changes of mountain areas have been suggested to partly account for the occurrence of high levels of biodiversity and endemism. However, their effects on dispersal, differentiation and evolution of many groups of plants are still unknown. In this study, we examined the detailed diversification history of Primula sect. Armerina, and used biogeographic analysis and macro-evolutionary modeling to investigate a series of different questions concerning the evolution of the geographical and ecological distribution of the species in this section. RESULTS: We sequenced five chloroplast and one nuclear genes for species of Primula sect. Armerina. Neither chloroplast nor nuclear trees support the monophyly of the section. The major incongruences between the two trees occur among closely related species and may be explained by hybridization. Our dating analyses based on the chloroplast dataset suggest that this section began to diverge from its relatives around 3.55 million years ago, largely coinciding with the last major uplift of the Qinghai-Tibet Plateau (QTP). Biogeographic analysis supports the origin of the section in the Himalayan Mountains and dispersal from the Himalayas to Northeastern QTP, Western QTP and Hengduan Mountains. Furthermore, evolutionary models of ecological niches show that the two P. fasciculata clades have significantly different climatic niche optima and rates of niche evolution, indicating niche evolution under climatic changes and further providing evidence for explaining their biogeographic patterns. CONCLUSION: Our results support the hypothesis that geologic and climatic events play important roles in driving biological diversification of organisms in the QTP area. The Pliocene uplift of the QTP and following climatic changes most likely promoted both the inter- and intraspecific divergence of Primula sect. Armerina. This study also illustrates how niche evolution under climatic changes influences biogeographic patterns.
Resumo:
Inducible nitric oxide synthase (iNOS) functions as a homodimer. In cell extracts, iNOS molecules partition both in cytosolic and particulate fractions, indicating that iNOS exists as soluble and membrane associated forms. In this study, iNOS features were investigated in human intestinal epithelial cells stimulated with cytokines and in duodenum from mice exposed to flagellin. Our experiments indicate that iNOS is mainly associated with the particulate fraction of cell extracts. Confocal microscopy showed a preferential localization of iNOS at the apical pole of intestinal epithelial cells. In particulate fractions, iNOS dimers were more abundant than in the cytosolic fraction. Similar observations were seen in mouse duodenum samples. These results suggest that, in epithelial cells, iNOS activity is regulated by localization-dependent processes.