895 resultados para CHEMICAL REACTIONS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The steam reforming is one of most utilized process of hydrogen production because of its high production efficiencies and its technological maturity. The use of ethanol for this purpose is a interesting option because this is a renewable and less environmentally offensive fuel. The objective of this study is evaluate the physical-chemical, thermodynamic and environmental analyses of steam reforming of ethanol. whose objective is to produce 0.7 Nm3/h of hydrogen to be used by a PEMFC of l kW. In this physical-chemical analysis, a global reaction of ethanol was considered. That is, the superheated ethanol and steam, at high temperatures, react to produce hydrogen and carbon dioxide. Beyond it's the simplest form to study the steam reforming of ethanol to hydrogen production, it's the case where occurs the highest production of hydrogen (the product to be used by fuel cells) and carbon dioxide, to be eliminated. But this reaction isn't real and depends greatly on the thermodynamic conditions of reforming, technical features of reformer system and catalysts. Other products generally formed (but not investigated in this study) are methane, carbon monoxide, among others. It was observed that the products is commonly produced in the moment when the reaction attains temperatures about 206°C (below this temperature, the reaction trend to the reaetants, that is, from hydrogen and carbon dioxide to steam and ethanol) and the advance degree of this reaction increases when the temperature of reaction also increases and when its pressure decreases. It's suggested reactions at about 600°C or higher. However, when the temperature attains 700°C, the stability of this reaction is occurred, that is, the production of reaction productions attains to the limit, that is the highest possible production. In temperatures above 700°C, the use of energy is very high for produce more products, having higher costs of production that the suggested temperature. The indicated pressure is 1 atm., a value that allows a desirable economy of energy that would also be used for pressurization or depressurization of steam reformer. In exergetic analysis, it's seem that the lower irreversibililies occur when the pressure of reactions are lower. However, the temperature changes don't affect significantly the irreversibilites. Utilizing the obtained results from this analysis, it was concluded that the best thermodynamic conditions for steam reforming of ethanol is the same conditions suggested in the physical-chemical analysis. The exergetic and first law efficiencies are high on the thermodynamie conditions studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BaCe 0.9-xNb xY 0.1O 3-δ (where x=0, 0.01, 0.03 and 0.05) powders were synthesized by solid-state reaction to investigate the influence of Nb concentration on chemical stability and electrical properties of the sintered samples. The dense electrolyte pellets were formed from the powders after being uniaxially pressed and sintered at 1550 °C. The electrical conductivities determined by impedance measurements in temperature range of 550-750 °C in different atmospheres (dry argon and wet hydrogen) showed a decreasing trend with an increase of Nb content. For all samples higher conductivities were observed in the wet hydrogen than in dry argon atmosphere. The chemical stability was enhanced with increasing of Nb concentration. It was found that BaCe 0.87Nb 0.03Y 0.1O 3-δ is the optimal composition that satisfies the opposite demands for electrical conductivity and chemical stability, reaching 0.8×10 -2 S cm -1 in wet hydrogen at 650 °C compared to 1.01×10 -2 S cm -1 for undoped electrolyte. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The results of the histopathological analyses after the implantation of highly crystalline PVA microspheres in subcutaneous tissues of Wistar rats are here in reported. Three different groups of PVA microparticles were systematically studied: highly crystalline, amorphous, and commercial ones. In addition to these experiments, complementary analyses of architectural complexity were performed using fractal dimension (FD), and Shannon's entropy (SE) concepts. The highly crystalline microspheres induced inflammatory reactions similar to the ones observed for the commercial ones, while the inflammatory reactions caused by the amorphous ones were less intense. Statistical analyses of the subcutaneous tissues of Wistar rats implanted with the highly crystalline microspheres resulted in FD and SE values significantly higher than the statistical parameters observed for the amorphous ones. The FD and SE parameters obtained for the subcutaneous tissues of Wistar rats implanted with crystalline and commercial microparticles were statistically similar. Briefly, the results indicated that the new highly crystalline microspheres had biocompatible behavior comparable to the commercial ones. In addition, statistical tools such as FD and SE analyses when combined with histopathological analyses can be useful tools to investigate the architectural complexity tissues caused by complex inflammatory reactions. © 2012 WILEY PERIODICALS, INC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wet impregnation of pre-synthesized surfactant-stabilized aqueous rhodium (0) colloidal suspension on silica was employed in order to prepare supported Rh-0 nanoparticles of well-defined composition, morphology and size. A magnetic core-shell support of silica (Fe(3)O4@SiO2) was used to increase the handling properties of the obtained nanoheterogeneous catalyst. The nanocomposite catalyst Fe3O4@SiO2-Rh-0 NPs was highly active in the solventless hydrogenation of model olefins and aromatic substrates under mild conditions with turnover frequencies up to 143,000 h(-1). The catalyst was characterized by various transmission electron microscopy techniques showing well-dispersed rhodium nanoparticles (similar to 3 nm) mainly located at the periphery of the silica coating. The heterogeneous magnetite-supported nanocatalyst was investigated in the hydrogenation of cyclohexene and compared to the previous surfactant-stabilized aqueous Rh-0 colloidal suspension and various silica-supported Rh-0 nanoparticles. Finally, the composite catalyst could be reused in several runs after magnetic separation. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein we present results on the oscillatory dynamics in the bromate-oxalic acid-acetone-Ce(III)/Ce(IV) system in batch and also in a CSTR. We show that Ce(III) is the necessary reactant to allow the emergence of oscillations. In batch, oscillations occur with Ce(III) and also with Ce(IV), but no induction period is observed with Ce(III). In a CSTR, no oscillations were found using a freshly prepared Ce(IV), but only when the cerium-containing solution was aged, allowing partial conversion of Ce(IV) to Ce(III) by reaction with acetone. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization and used to perform the reactions under the following operational conditions: beef tallow-to-ethanol molar ratio of 1:9, 45 degrees C and 400 units of enzymatic activity per gram of fat. Products, characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosimetry, thermogravimetry and H-1 NMR spectroscopy, suggested that the biodiesel sample obtained in the reaction catalyzed by Burkholderia cepacia lipase has the best set of properties for fuel usage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work was focused on the steam explosion pretreatment reproduction and alkaline delignification reactions on a pilot scale for the ethanol production, through different varieties of natural sugarcane bagasse, pretreated bagasse and delignified pretreated bagasse (cellulosic pulp). The possible chemical composition differences of the various types of bagasse, as well as the chemical composition variations of the materials in the 20 processes of pretreatment and delignification on the pilot scale were verified. The analytical results of the 20 samples of most diverse varieties and origins of natural sugarcane bagasse considering planting soils, planting periods and weather; show no significant chemical differences. It is evident that only with the chemical composition it is not possible to verify the differences between the varieties of sugarcane bagasses. The research results may offer some evidences of these varieties, but it is not a reliable parameter. The pilot process of steam explosion pretreatment and the alkaline delignification process of pretreated material showed through analytical results a good capacity of reproduction, as the standard differences were below 2.7. The average allowed in the pretreatment and alkaline delignification processes were 66.1 +/- 0.8 and 51.5 +/- 2.6 respectively, ensuring an excellent reproduction capacity of the processes obtained through chemical characterizations. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid biofuels can be produced from a variety of feedstocks and processes. Ethanol and biodiesel production processes based on conventional raw materials are already commercial, but subject to further improvement and optimization. Biofuels production processes using lignocellulosic feedstocks are still in the demonstration phase and require further R&D to increase efficiency. A primary tool to analyze the efficiency of biofuels production processes from an integrated point of view is offered by exergy analysis. To gain further insight into the performance of biofuels production processes, a simulation tool, which allows analyzing the effect of process variables on the exergy efficiency of stages in which chemical or biochemical reactions take place, were implemented. Feedstocks selected for analysis were parts or products of tropical plants such as the fruit and flower stalk of banana tree, palm oil, and glucose syrups. Results of process simulation, taking into account actual process conditions, showed that the exergy efficiencies of the acid hydrolysis of banana fruit and banana pulp were in the same order (between 50% and 60%), lower than the figure for palm oil transesterification (90%), and higher that the exergy efficiency of the enzymatic hydrolysis of flower stalk (20.3%). (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solvent has a significant influence in the rate of reactions promoted by Stryker's reagent The reactions performed in THF were, in most cases, faster than in toluene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The known paddlewheel, tetrakis(acetato)chloridodiruthenium(II,III), offers a versatile synthetic route to a novel class of antitumor diruthenium(II,III) metallo drugs, where the equatorial ligands are nonsteroidal anti-inflammatory carboxylates. This complex was studied here as a soluble starting prototype model for antitumor analogues to elucidate the reactivity of the [Ru-2(CH3COO)(4)](+) framework. Thermodynamic studies on equilibration reactions for axial substitution of water by chloride and kinetic studies on reactions of the diaqua complexes with the amino acids glycine, cysteine, histidine, and tryptophan were performed. The standard thermodynamic reaction parameters Delta H degrees, Delta S degrees, and Delta V degrees were determined and showed that both of the sequential axial substitution reactions are enthalpy driven. Kinetic rate laws and rate constants were determined for the axial substitution reactions of coordinated water by the amino acids that gave the corresponding aqua(amino acid)-Ru-2 substituted species. The results revealed that the [Ru-2(CH3COO)(4)](+) paddlewheel framework remained stable during the axial ligand substitution reactions and was also mostly preserved in the presence of the amino acids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization and used to perform the reactions under the following operational conditions: beef tallow-to-ethanol molar ratio of 1:9, 45ºC and 400 units of enzymatic activity per gram of fat. Products, characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosimetry, thermogravimetry and ¹H NMR spectroscopy, suggested that the biodiesel sample obtained in the reaction catalyzed by Burkholderia cepacia lipase has the best set of properties for fuel usage.