972 resultados para C. Electrical property


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shipping list no.: 87-209-P (v. 3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vols.1-87,1872-1940 also called no.1-258.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"March 1985."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-insulating InP was implanted with MeV P, As, Ga, and In ions, and the resulting evolution of structural properties with increased annealing temperature was analyzed using double crystal x-ray diffractometry and cross sectional transmission electron microscopy. The types of damage identified are correlated with scanning spreading resistance and scanning capacitance measurements, as well as with previously measured Hall effect and time resolved photoluminescence results. We have identified multiple layers of conductivity in the samples which occur due to the nonuniform damage profile of a single implant. Our structural studies have shown that the amount and type of damage caused by implantation does not scale with implant ion atomic mass. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroperative hypothermia is recognized to increase mortality and morbidity, and the paediatric anaesthetist faces specific challenges resulting from the increased body surface to volume ratio, particularly in smaller children. We describe three children who were consecutive patients on one operating list and sustained severe thermal injuries. These were due to a malfunctioning electrical heating mat, despite appropriate use and monitoring by the attending anaesthetist. It is rare for thermal warming devices to cause injury. We review the use of heating mats, and suggest modifications in their manufacture which may minimize the risks associated with heating devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Well-densified 10 mol% Dy2O3-doped CeO2 (20DDC) ceramics with average grain sizes of similar to 0.12-1.5 mu m were fabricated by pressureless sintering at 950-1550 degrees C using a reactive powder thermally decomposed from a carbonate precursor, which was synthesized via a carbonate coprecipitation method employing nitrates as the starting salts and ammonium carbonate as the precipitant. Electrical conductivity of the ceramics, measured by the dc three-point impedance method, shows a V-shape curve against the average grain size. The sample with the smallest grain size of 0.12 mu m exhibits a high conductivity of similar to 10(-1.74) S/cm at the measurement temperature of 700 degrees C, which is about the same conduction level of the micro-grained 10 mol% Sm2O3- or Gd2O3-doped CeO2, two leading electrolyte materials. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A platinum (Pt) on pure ceria (CeO2) supported by carbon black (CB) anode was synthesized using a combined process of precipitation and coimpregnation methods. The electrochemical activity of methanol oxidation reaction on synthesized Pt-CeO2/CB anodes was investigated by cyclic voltammetry and chronoamperometry experimentation. To improve the anode property on Pt-CeO2/CB, the influence of particle morphology and particle size on anode properties was examined. The morphology and particle size of the pure CeO2 particles could be controlled by changing the preparation conditions. The anode properties (i.e., peak current density and onset potential for methanol oxidation) were improved by using nanosize CeO2 particles. This indicates that a larger surface area and higher activity on the surface of CeO2 improve the anode properties. The influence of particle morphology of CeO2 on anode properties was not very large. The onset potential for methanol oxidation reaction on Pt-CeO2/CB, which consisted of CeO2 with a high surface area, was shifted to a lower potential compared with that on the anodes, which consisted of CeO2 with a low surface area. The onset potential on Pt-CeO2/CB at 60 degrees C became similar to that on the commercially available Pt-Ru/carbon anode. We suggest that the rate-determining steps of the methanol oxidation reaction on Pt-CeO2/CB and commercially available Pt-Ru/carbon anodes are different, which accounts for the difference in performance. In the reaction mechanism on Pt-CeO2/CB, we conclude that the released oxygen species from the surface of CeO2 particles contribute to oxidation of adsorbed CO species on the Pt surface. This suggests that the anode performance of the Pt-CeO2/CB anode would lead to improvements in the operation of direct methanol fuel cells at 80 degrees C by the enhancement of diffusion of oxygen species created from the surface of nanosized CeO2 particles. Therefore, we conclude that fabrication of nanosized CeO2 with a high surface area is a key factor for development of a high-quality Pt-CeO2/CB anode in direct methanol fuel cells.