977 resultados para Burroughs D-machine (Computer)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Abnormalities in any component of the cell cycle regulatory machine may result in oral. cancer, and markers of cell proliferation have been used to determine the prognosis of tumor progression. The aim of this study was to determine whether silver-stained nucleolar organizer region (AgNOR) and Ki-67 measurements could improve the assessment of growth rates in oral lesions. Eighty-three oral biopsies were studied, 20 of which were classified as fibrous inflammatory hyperplasia (FIH), 40 as leukoplakia (LKP) and 23 as oral. squamous cell carcinoma (OSCC). Within the LKP group, 22 out of 29 biopsies were diagnosed as non-dysplastic leukoplakia (LK) and 18 as dysplastic teukoptakia (DLK), presenting discrete, moderate and severe dysplasia. Ki-67 immunotabeting of the lesions increased steadily in the following order: FIH, DLK, LK and OSCC, indicating that Ki-67 is a good marker for predicting the protiferative fraction among benign, premalignant and malignant oral lesions. The median values of AgNOR parameters indicate that the morphometric index gives better results regarding the proliferative rate than the numerical one. A series of linear regressions between AgNOR parameters and Ki-67 showed positive associations. We conclude that a combination of Ki-67 and morphometric AgNOR analyses could be used as an aid in the determination of the protiferative status of oral epithelial. cells in oral cancer. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
The behaviors of an arc-shaped stator induction machine (the sector-motor) and a disc-secondary linear induction motor are analyzed in this work for different values of the frequency. Variable frequency is produced by a voltage source controlled-current inverter which keeps constant the r.m.s. value of the phase current, also assuring a sinusoidal waveform. For the simulations of the machine developed thrust, an equivalent circuit is used. It is obtained through the application of the one-dimensional theory to the modeling. The circuit parameters take into account the end effects, always present is these kind of machines. The phase current waveforms are analyzed for their harmonic contents. Experimental measurements were carried out in laboratory and are presented with the simulations, for comparison.
Resumo:
The problem of dynamic camera calibration considering moving objects in close range environments using straight lines as references is addressed. A mathematical model for the correspondence of a straight line in the object and image spaces is discussed. This model is based on the equivalence between the vector normal to the interpretation plane in the image space and the vector normal to the rotated interpretation plane in the object space. In order to solve the dynamic camera calibration, Kalman Filtering is applied; an iterative process based on the recursive property of the Kalman Filter is defined, using the sequentially estimated camera orientation parameters to feedback the feature extraction process in the image. For the dynamic case, e.g. an image sequence of a moving object, a state prediction and a covariance matrix for the next instant is obtained using the available estimates and the system model. Filtered state estimates can be computed from these predicted estimates using the Kalman Filtering approach and based on the system model parameters with good quality, for each instant of an image sequence. The proposed approach was tested with simulated and real data. Experiments with real data were carried out in a controlled environment, considering a sequence of images of a moving cube in a linear trajectory over a flat surface.
Resumo:
This paper describes a data mining environment for knowledge discovery in bioinformatics applications. The system has a generic kernel that implements the mining functions to be applied to input primary databases, with a warehouse architecture, of biomedical information. Both supervised and unsupervised classification can be implemented within the kernel and applied to data extracted from the primary database, with the results being suitably stored in a complex object database for knowledge discovery. The kernel also includes a specific high-performance library that allows designing and applying the mining functions in parallel machines. The experimental results obtained by the application of the kernel functions are reported. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
Flutter is an in-flight vibration of flexible structures caused by energy in the airstream absorbed by the lifting surface. This aeroelastic phenomenon is a problem of considerable interest in the aeronautic industry, because flutter is a potentially destructive instability resulting from an interaction between aerodynamic, inertial, and elastic forces. To overcome this effect, it is possible to use passive or active methodologies, but passive control adds mass to the structure and it is, therefore, undesirable. Thus, in this paper, the goal is to use linear matrix inequalities (LMIs) techniques to design an active state-feedback control to suppress flutter. Due to unmeasurable aerodynamic-lag states, one needs to use a dynamic observer. So, LMIs also were applied to design a state-estimator. The simulated model, consists of a classical flat plate in a two-dimensional flow. Two regulators were designed, the first one is a non-robust design for parametric variation and the second one is a robust control design, both designed by using LMIs. The parametric uncertainties are modeled through polytopic uncertainties. The paper concludes with numerical simulations for each controller. The open-loop and closed-loop responses are also compared and the results show the flutter suppression. The perfomance for both controllers are compared and discussed. Copyright © 2006 by ABCM.
Resumo:
The knowledge of cell-cycle control has shown that the capacity of malignant growth is acquired by the stepwise accumulation of defects in specific genes regulating cell growth. Histologic diagnosis might be improved by a quantitative evaluation of more specific diagnosis biomarkers, which could help to precisely identify pre-malignant and malignant oral lesions. The aim of the present study is to evaluate whether computer-based quantitative assessment of p53, PCNA and Ki-67 immunohistochemical expression, could be used clinically to foresee the risk of oral malignant transformation. This retrospective study was carried out in ninety-five oral biopsies, 27 were classified as fibrous inflammatory hyperplasia, 40 as leukoplakia and 28 as oral squamous cell carcinoma. Sixteen out of the 40 leukoplakia were diagnosed as non-dysplastic leukoplakia, the other 24 being dysplastic leukoplakia, of which 50.0% were classified as moderate to severe dysplasia. Comparison of the four groups of oral tissues showed significant rises in p53 and Ki-67 positivity index, which increased steadily in the order benign, pre-malignant, and malignant. In contrast, it was not possible to relate higher PCNA levels with pre-malignant and malignant oral lesions. We therefore conclude that PCNA immunohistochemistry expression is probably an inappropriate marker to identify oral carcinogenesis, whereas joint quantitative evaluation of p53 and Ki-67, appears to be useful as a tumor marker, providing a pre-diagnostic estimate of the potential for cell-cycle deregulation of the oral proliferate status.
Resumo:
In order to simplify computer management, several system administrators are adopting advanced techniques to manage software configuration of enterprise computer networks, but the tight coupling between hardware and software makes every PC an individual managed entity, lowering the scalability and increasing the costs to manage hundreds or thousands of PCs. Virtualization is an established technology, however its use is been more focused on server consolidation and virtual desktop infrastructure, not for managing distributed computers over a network. This paper discusses the feasibility of the Distributed Virtual Machine Environment, a new approach for enterprise computer management that combines virtualization and distributed system architecture as the basis of the management architecture. © 2008 IEEE.
Resumo:
The use of sensorless technologies is an increasing tendency on industrial drivers for electrical machines. The estimation of electrical and mechanical parameters involved with the electrical machine control is used very frequently in order to avoid measurement of all variables related to this process. The cost reduction may also be considered in industrial drivers, besides the increasing robustness of the system, as an advantage of the use of sensorless technologies. This work proposes the use of a recurrent artificial neural network to estimate the speed of induction motor for sensorless control schemes using one single current sensor. Simulation and experimental results are presented to validate the proposed approach. ©2008 IEEE.
Resumo:
The presence of precipitates in metallic materials affects its durability, resistance and mechanical properties. Hence, its automatic identification by image processing and machine learning techniques may lead to reliable and efficient assessments on the materials. In this paper, we introduce four widely used supervised pattern recognition techniques to accomplish metallic precipitates segmentation in scanning electron microscope images from dissimilar welding on a Hastelloy C-276 alloy: Support Vector Machines, Optimum-Path Forest, Self Organizing Maps and a Bayesian classifier. Experimental results demonstrated that all classifiers achieved similar recognition rates with good results validated by an expert in metallographic image analysis. © 2011 Springer-Verlag Berlin Heidelberg.
Resumo:
Due to the increased incidence of skin cancer, computational methods based on intelligent approaches have been developed to aid dermatologists in the diagnosis of skin lesions. This paper proposes a method to classify texture in images, since it is an important feature for the successfully identification of skin lesions. For this is defined a feature vector, with the fractal dimension of images through the box-counting method (BCM), which is used with a SVM to classify the texture of the lesions in to non-irregular or irregular. With the proposed solution, we could obtain an accuracy of 72.84%. © 2012 AISTI.
Resumo:
The correct classification of sugar according to its physico-chemical characteristics directly influences the value of the product and its acceptance by the market. This study shows that using an electronic tongue system along with established techniques of supervised learning leads to the correct classification of sugar samples according to their qualities. In this paper, we offer two new real, public and non-encoded sugar datasets whose attributes were automatically collected using an electronic tongue, with and without pH controlling. Moreover, we compare the performance achieved by several established machine learning methods. Our experiments were diligently designed to ensure statistically sound results and they indicate that k-nearest neighbors method outperforms other evaluated classifiers and, hence, it can be used as a good baseline for further comparison. © 2012 IEEE.
Resumo:
Nowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques. © 2012 IEEE.
Resumo:
The implementation of vibration analysis techniques based on virtual instrumentation has spread increasingly in the academic and industrial branch, since the use of any software for this type of analysis brings good results at low cost. Among the existing software for programming and creation of virtual instruments, the LabVIEW was chosen for this project. This software has good interface with the method of graphical programming. In this project, it was developed a system of rotating machine condition monitoring. This monitoring system is applied in a test stand, simulating large scale applications, such as in hydroelectric, nuclear and oil exploration companies. It was initially used a test stand, where an instrumentation for data acquisition was inserted, composed of accelerometers and inductive proximity sensors. The data collection system was structured on the basis of an NI 6008 A/D converter of National Instruments. An electronic circuit command was developed through the A/D converter for a remote firing of the test stand. The equipment monitoring is performed through the data collected from the sensors. The vibration signals collected by accelerometers are processed in the time domain and frequency. Also, proximity probes were used for the axis orbit evaluation and an inductive sensor for the rotation and trigger measurement. © (2013) Trans Tech Publications, Switzerland.
Resumo:
The automatic characterization of particles in metallographic images has been paramount, mainly because of the importance of quantifying such microstructures in order to assess the mechanical properties of materials common used in industry. This automated characterization may avoid problems related with fatigue and possible measurement errors. In this paper, computer techniques are used and assessed towards the accomplishment of this crucial industrial goal in an efficient and robust manner. Hence, the use of the most actively pursued machine learning classification techniques. In particularity, Support Vector Machine, Bayesian and Optimum-Path Forest based classifiers, and also the Otsu's method, which is commonly used in computer imaging to binarize automatically simply images and used here to demonstrated the need for more complex methods, are evaluated in the characterization of graphite particles in metallographic images. The statistical based analysis performed confirmed that these computer techniques are efficient solutions to accomplish the aimed characterization. Additionally, the Optimum-Path Forest based classifier demonstrated an overall superior performance, both in terms of accuracy and speed. © 2012 Elsevier Ltd. All rights reserved.