851 resultados para Brake Wear.
Resumo:
Background In Booth v Amaca Pty Ltd and Amaba Pty Ltd,1 the New South Wales Dust Diseases Tribunal awarded a retired motor mechanic $326 640 in damages for his malignant pleural mesothelioma allegedly caused by exposure to asbestos through working with the brake linings manufactured by the defendants. The evidence before the Tribunal was that the plaintiff had been exposed to asbestos prior to working as a mechanic from home renovations when he was a child and loading a truck as a youth. However, as a mechanic he had been exposed to asbestos in brake linings on which he worked from 1953 to 1983. Curtis DCJ held at [172] that the asbestos from the brake linings ‘materially contributed to [the plaintiff’s] contraction of mesothelioma’. This decision was based upon acceptance that the effect of exposure to asbestos on the development of mesothelioma was cumulative and rejection of theory that a single fibre of asbestos can cause the disease...
Resumo:
- Speeding and crash involvement in Australia - Speed management in Australia - Jurisdictional differences - National Road Safety Strategy (2011-2020) - Auditor-General reviews of speed camera programs - The role of public opinion/feedback - Implications for speed management
Resumo:
The fatality and injury rate of motorcyclists per registered vehicle are higher than those of other motor vehicles by 13 and 7 times respectively. The crash involvement rate of motorcyclists as a victim party is 58% at intersections and as an offending party is 67% at expressways. Previous research efforts showed that the motorcycle safety programs are not very effective in improving motorcycle safety. This is perhaps due to inefficient design of safety program as specific causal factors may not be well explored. The objective of this study is to propose more sophisticated countermeasures and awareness programs for improving motorcycle safety after analyzing specific causal factors for motorcycle crashes at intersections and expressways. Methodologically this study applies the binary logistic model to explore the at-fault or not-at-fault crash involvement of motorcyclists at those locations. A number of explanatory variables representing roadway characteristics, environmental factors, motorcycle descriptions, and rider demographics have been evaluated. Results shows that the night time crash occurrence, presence of red light camera, lane position, rider age, licence class, and multivehicle collision significantly affect the fault of motorcyclists involved in crashes at intersections. On the other hand, the night time crash occurrence, lane position, speed limit, rider age, licence class, engine capacity, riding with pillion passenger, foreign registered motorcycles, and multivehicle collision has been found to be significant at expressways. Legislate to wear reflective clothes and using reflective markings on the motorcycles and helmets are suggested as an effective countermeasure for reducing their vulnerability. The red light cameras at intersections reduce the vulnerability of motorcycles and hence motorcycle flow and motorcycle crashes should be considered during installation of red light cameras. At signalized intersections, motorcyclists may be taught to follow correct movement and queuing rather than weaving through the traffic as it leads them to become victims of other motorists. The riding simulators in the training centers can be useful to demonstrate the proper movement and queuing at junctions. Riding with pillion passenger and excess speed at expressways are found to significantly influence the at at-fault crash involvement of the motorcyclists. Hence the motorcyclists should be advised to concentrate more on riding while riding with pillion passenger and encouraged to avoid excess speed at expressways. Very young and very older group of riders are found to be at-fault than middle aged groups. Hence this group of riders should be targeted for safety improvement. This can be done by arranging safety talks and programs in motorcycling clubs in colleges and universities as well as community riding clubs with high proportion of elderly riders. It is recommended that the driving centers may use the findings of this study to include in licensure program to make motorcyclists more aware of the different factors which expose the motorcyclists to crash risks so that more defensive riding may be needed.
Resumo:
Articular cartilage is a highly resilient tissue located at the ends of long bones. It has a zonal structure, which has functional significance in load-bearing. Cartilage does not spontaneously heal itself when damaged, and untreated cartilage lesions or age-related wear often lead to osteoarthritis (OA). OA is a degenerative condition that is highly prevalent, age-associated, and significantly affects patient mobility and quality of life. There is no cure for OA, and patients usually resort to replacing the biological joint with an artificial prosthesis. An alternative approach is to dynamically regenerate damaged or diseased cartilage through cartilage tissue engineering, where cells, materials, and stimuli are combined to form new cartilage. However, despite extensive research, major limitations remain that have prevented the wide-spread application of tissue-engineered cartilage. Critically, there is a dearth of information on whether autologous chondrocytes obtained from OA patients can be used to successfully generate cartilage tissues with structural hierarchy typically found in normal articular cartilage. I aim to address these limitations in this thesis by showing that chondrocyte subpopulations isolated from macroscopically normal areas of the cartilage can be used to engineer stratified cartilage tissues and that compressive loading plays an important role in zone-dependent biosynthesis of these chondrocytes. I first demonstrate that chondrocyte subpopulations from the superficial (S) and middle/deep (MD) zones of OA cartilage are responsive to compressive stimulation in vitro, and that the effect of compression on construct quality is zone-dependent. I also show that compressive stimulation can influence pericelluar matrix production, matrix metalloproteinase secretion, and cytokine expression in zonal chondrocytes in an alginate hydrogel model. Subsequently, I focus on recreating the zonal structure by forming layered constructs using the alginate-released chondrocyte (ARC) method either with or without polymeric scaffolds. Resulting zonal ARC constructs had hyaline morphology, and expressed cartilage matrix molecules such as proteoglycans and collagen type II in both scaffold-free and scaffold-based approaches. Overall, my findings demonstrate that chondrocyte subpopulations obtained from OA joints respond sensitively to compressive stimulation, and are able to form cartilaginous constructs with stratified organization similar to native cartilage using the scaffold-free and scaffold-based ARC technique. The ultimate goal in tissue engineering is to help provide improved treatment options for patients suffering from debilitating conditions such as OA. Further investigations in developing functional cartilage replacement tissues using autologous chondrocytes will bring us a step closer to improving the quality of life for millions of OA patients worldwide.
Resumo:
Total hip arthroplasty (THA) has a proven clinical record for providing pain relief and return of function to patients with disabling arthritis. There are many successful options for femoral implant design and fixation. Cemented, polished, tapered femoral implants have been shown to have excellent results in national joint registries and long-term clinical series. These implants are usually 150mm long at their lateral aspect. Due to their length, these implants cannot always be offered to patients due to variations in femoral anatomy. Polished, tapered implants as short as 95mm exist, however their small proximal geometry (neck offset and body size) limit their use to smaller stature patients. There is a group of patients in which a shorter implant with a maintained proximal body size would be advantageous. There are also potential benefits to a shorter implant in standard patient populations such as reduced bone removal due to reduced reaming, favourable loading of the proximal femur, and the ability to revise into good proximal bone stock if required. These factors potentially make a shorter implant an option for all patient populations. The role of implant length in determining the stability of a cemented, polished, tapered femoral implant is not well defined by the literature. Before changes in implant design can be made, a better understanding of the role of each region in determining performance is required. The aim of the thesis was to describe how implant length affects the stability of a cemented, polished, tapered femoral implant. This has been determined through an extensive body of laboratory testing. The major findings are that for a given proximal body size, a reduction in implant length has no effect on the torsional stability of a polished, tapered design, while a small reduction in axial stability should be expected. These findings are important because the literature suggests that torsional stability is the major determinant of long-term clinical performance of a THA system. Furthermore, a polished, tapered design is known to be forgiving of cement-implant interface micromotion due to the favourable wear characteristics. Together these findings suggest that a shorter polished, tapered implant may be well tolerated. The effect of a change in implant length on the geometric characteristics of polished, tapered design were also determined and applied to the mechanical testing. Importantly, interface area does play a role in stability of the system; however it is the distribution of the interface and not the magnitude of the area that defines stability. Taper angle (at least in the range of angles seen in this work) was shown not to be a determinant of axial or torsional stability. A range of implants were tested, comparing variations in length, neck offset and indication (primary versus cement-in-cement revision). At their manufactured length, the 125mm implants were similar to their longer 150mm counterparts suggesting that they may be similarly well tolerated in the clinical environment. However, the slimmer cement-in-cement revision implant was shown to have a poorer mechanical performance, suggesting their use in higher demand patients may be hazardous. An implant length of 125mm has been shown to be quite stable and the results suggest that a further reduction to 100mm may be tolerated. However, further work is required. A shorter implant with maintained proximal body size would be useful for the group of patients who are unable to access the current standard length implants due to variations in femoral anatomy. Extending the findings further, the similar function with potential benefits of a shorter implant make their application to all patients appealing.
Resumo:
This study investigated the effect of engine backpressure on the performance and emissions of a CI engine under different speed and load conditions. A 4-stroke single cylinder naturally aspirated direct injection (DI) diesel engine was used for the investigation with the backpressure of 0, 40, 60 and 80 mm of Hg at engine speed of 600, 950 and 1200 rpm. Two parameters were measured during the engine operation: one is engine performance (brake thermal efficiency and brake specific fuel consumption), and the other is the exhaust emissions (NOx, CO and odor). NOx and CO emission were measured by flue gas analyzer (IMR 1400). The engine backpressure produced by the flow regulating valve in the exhaust line was measured by Hg (mercury) manometer. The result showed that, the brake thermal efficiency and brake specific fuel consumption (bsfc) are almost unchanged with increasing backpressure up to 40 mm of Hg pressure for all engine speed and load conditions. The NOx emission became constant or a little decreased with increasing backpressure. The formation of CO was slightly higher with increase of load and back pressure at low engine speed condition. However, under high speed conditions, CO reduced significantly with increasing backpressure for all load conditions. The odor level was similar or a little higher with increasing backpressure for all engine speed and load conditions. Hence, backpressure up to a certain level is not detrimental for a CI engine.
Resumo:
Purpose To determine the prevalence of papillary changes of the upper palpebral conjunctiva and folliculosis of the lower palpebral conjunctiva in Chinese children with no history of contact lens wear. Method Ninety-nine subjects (aged 6–15 years old) who were interested in a myopia control study were screened for papillary changes and folliculosis of the palpebral conjunctiva. Photodocumentation was performed under white and blue light (after the application of fluorescein) with a yellow filter and the photographs were graded by a group of practitioners according to a pre-set grading scale. Analysis was performed with the subjects divided into groups according to gender and age. Results More than 48% of the subjects had clinically significant (≥Grade 3) papillary changes in the upper palpebral conjunctiva. The prevalence of significant folliculosis in the lower lid was about 33%. The prevalence of significant papillary changes and folliculosis were similar between genders. No differences were observed between younger (age ≤ 10 years old) and older (age > 10 years old) in papillary changes but younger subjects showed a higher prevalence of folliculosis. Conclusions The prevalences of clinically significant papillary changes and folliculosis of unknown aetiology are high in Chinese children.
Resumo:
Research background: For decades the Chuck Taylor All Star basketball shoe (first designed in 1921 by Converse, an American shoe company), has been an iconic item of fashion apparel, particularly for the youth oriented market - as a form of self expression and identify, adolescents have for generations been customising their Converse sneakers to create innovative and unique footwear. Although originally developed purely for sport, sneakers gradually crossed over into fashion and the majority of athletic shoes are now purchased for street fashion or leisure wear. Artisan Gallery (Brisbane), in conjunction with the exhibition Reboot: Function, Fashion and the Sneaker, a history of the sneaker, selected 20 designers to customise and re-design the classic Converse Chuck Taylor All Stars shoe and in doing so highlighted the diversity of forms possible for creative outcomes. As Artisan Gallery Curator Kirsten Fitzpatrick states “the ‘sports show’, designed to coincide with the Olympics, is also about exploring the sneaker as a platform for creativity... and (one) of the more bazaar creations was Dean Brough's deconstructed shoes to make men’s underwear.” The exhibition ran from 21 June – 16 August 2012: http://artisan-ideaskillproduct.blogspot.com.au/2012/06/converse-blank-canvas-project.html Research question: Even though the sneaker is a fashion item, it still is fundamentally used for foot protection and historically was aligned to ball sports, principally Basketball - as a fashion designers/practitioner how can I connect (in a whimsical manner) this history of usage for ball sports to the sneaker and re-design and re-use all the physical elements of the shoe to produce a unique wearable item of clothing - the selected medium for this challenge and experimentation was the classic archetypal men’s white boxer shorts. Artisan Statement BALLS UP - The Converse Sneaker, it’s almost impossible to imagine a better rounded item to maintain peak performance for all types of ball sports. Gentlemen, your other most precious balls also deserve this level of comfort and support to sustain the hard times – the Converse Boxer, balls up, bats out, get ready to play hard. Research contribution: The project highlighted some of the unique and diverse creative manifestations that are possible from the classic sneaker. From a fashion practitioners’ perspective, the design outcomes (men’s boxer short made from converse sneakers) demonstrated the strong association to iconic fashion apparel, and recognised the connection to wearability and comfort that is requisite in both footwear and men’s underwear. Research significance: The exhibition was viewed by in excess of 1000 people and generated exceptional media coverage and public exposure/impact. As Artisan Gallery Curator Kirsten Fitzpatrick states “20 of Brisbane's best designers were given the opportunity to customise their own Converse Sneakers, with The Converse Blank Canvas Project.” And to be selected in this category demonstrates the calibre of importance for design prominence.
Resumo:
Atmospheric deposition is one of the most important pathways of urban stormwater pollution. Atmospheric deposition which can be in the form of either wet or dry deposition have distinct characteristics in terms of associated particulate sizes, pollutant types and influential parameters. This paper discusses the outcomes of a comprehensive research study undertaken to identify important traffic characteristics and climate factors such as antecedent dry period and rainfall characteristics which influences the characteristics of wet and dry deposition of solids and heavy metals. The outcomes confirmed that Zinc (Zn) is correlated with traffic volume whereas Lead (Pb), Cadmium (Cd), Nickel (Ni), and Copper (Cu) are correlated with traffic congestion. Consequently, reducing traffic congestion will be more effective than reducing traffic volume for improving air quality particularly in relation to Pb, Cd, Ni, and Cu. Zn was found to have the highest atmospheric deposition rate compared to other heavy metals. Zn in dry deposition is associated with relatively larger particle size fractions (>10 µm), whereas Pb, Cd, Ni and Cu are associated with relatively smaller particle size fractions (<10 µm). The analysis further revealed that bulk (wet plus dry) deposition which is correlated with rainfall depth and contains a relatively higher percentage of smaller particles compared to dry deposition which is correlated with the antecedent dry period. As particles subjected to wet deposition are smaller, they disperse over a larger area from the source of origin compared to particles subjected to dry deposition as buoyancy forces become dominant for smaller particles compared to the influence of gravity. Furthermore, exhaust emission particles were found to be primarily associated with bulk deposition compared to dry deposition particles which mainly originate from vehicle component wear.
Resumo:
The focus of governments on increasing active travel has motivated renewed interest in cycling safety. Bicyclists are up to 20 times more likely to be involved in serious injury crashes than drivers so understanding the relationship among factors in bicyclist crash risk is critically important for identifying effective policy tools, for informing bicycle infrastructure investments, and for identifying high risk bicycling contexts. This study aims to better understand the complex relationships between bicyclist self reported injuries resulting from crashes (e.g. hitting a car) and non-crashes (e.g. spraining an ankle) and perceived risk of cycling as a function of cyclist exposure, rider conspicuity, riding environment, rider risk aversion, and rider ability. Self reported data from 2,500 Queensland cyclists are used to estimate a series of seemingly unrelated regressions to examine the relationships among factors. The major findings suggest that perceived risk does not appear to influence injury rates, nor do injury rates influence perceived risks of cycling. Riders who perceive cycling as risky tend not to be commuters, do not engage in group riding, tend to always wear mandatory helmets and front lights, and lower their perception of risk by increasing days per week of riding and by increasing riding proportion on bicycle paths. Riders who always wear helmets have lower crash injury risk. Increasing the number of days per week riding tends to decrease both crash injury and non crash injury risk (e.g. a sprain). Further work is needed to replicate some of the findings in this study.
Resumo:
The ability to estimate the asset reliability and the probability of failure is critical to reducing maintenance costs, operation downtime, and safety hazards. Predicting the survival time and the probability of failure in future time is an indispensable requirement in prognostics and asset health management. In traditional reliability models, the lifetime of an asset is estimated using failure event data, alone; however, statistically sufficient failure event data are often difficult to attain in real-life situations due to poor data management, effective preventive maintenance, and the small population of identical assets in use. Condition indicators and operating environment indicators are two types of covariate data that are normally obtained in addition to failure event and suspended data. These data contain significant information about the state and health of an asset. Condition indicators reflect the level of degradation of assets while operating environment indicators accelerate or decelerate the lifetime of assets. When these data are available, an alternative approach to the traditional reliability analysis is the modelling of condition indicators and operating environment indicators and their failure-generating mechanisms using a covariate-based hazard model. The literature review indicates that a number of covariate-based hazard models have been developed. All of these existing covariate-based hazard models were developed based on the principle theory of the Proportional Hazard Model (PHM). However, most of these models have not attracted much attention in the field of machinery prognostics. Moreover, due to the prominence of PHM, attempts at developing alternative models, to some extent, have been stifled, although a number of alternative models to PHM have been suggested. The existing covariate-based hazard models neglect to fully utilise three types of asset health information (including failure event data (i.e. observed and/or suspended), condition data, and operating environment data) into a model to have more effective hazard and reliability predictions. In addition, current research shows that condition indicators and operating environment indicators have different characteristics and they are non-homogeneous covariate data. Condition indicators act as response variables (or dependent variables) whereas operating environment indicators act as explanatory variables (or independent variables). However, these non-homogenous covariate data were modelled in the same way for hazard prediction in the existing covariate-based hazard models. The related and yet more imperative question is how both of these indicators should be effectively modelled and integrated into the covariate-based hazard model. This work presents a new approach for addressing the aforementioned challenges. The new covariate-based hazard model, which termed as Explicit Hazard Model (EHM), explicitly and effectively incorporates all three available asset health information into the modelling of hazard and reliability predictions and also drives the relationship between actual asset health and condition measurements as well as operating environment measurements. The theoretical development of the model and its parameter estimation method are demonstrated in this work. EHM assumes that the baseline hazard is a function of the both time and condition indicators. Condition indicators provide information about the health condition of an asset; therefore they update and reform the baseline hazard of EHM according to the health state of asset at given time t. Some examples of condition indicators are the vibration of rotating machinery, the level of metal particles in engine oil analysis, and wear in a component, to name but a few. Operating environment indicators in this model are failure accelerators and/or decelerators that are included in the covariate function of EHM and may increase or decrease the value of the hazard from the baseline hazard. These indicators caused by the environment in which an asset operates, and that have not been explicitly identified by the condition indicators (e.g. Loads, environmental stresses, and other dynamically changing environment factors). While the effects of operating environment indicators could be nought in EHM; condition indicators could emerge because these indicators are observed and measured as long as an asset is operational and survived. EHM has several advantages over the existing covariate-based hazard models. One is this model utilises three different sources of asset health data (i.e. population characteristics, condition indicators, and operating environment indicators) to effectively predict hazard and reliability. Another is that EHM explicitly investigates the relationship between condition and operating environment indicators associated with the hazard of an asset. Furthermore, the proportionality assumption, which most of the covariate-based hazard models suffer from it, does not exist in EHM. According to the sample size of failure/suspension times, EHM is extended into two forms: semi-parametric and non-parametric. The semi-parametric EHM assumes a specified lifetime distribution (i.e. Weibull distribution) in the form of the baseline hazard. However, for more industry applications, due to sparse failure event data of assets, the analysis of such data often involves complex distributional shapes about which little is known. Therefore, to avoid the restrictive assumption of the semi-parametric EHM about assuming a specified lifetime distribution for failure event histories, the non-parametric EHM, which is a distribution free model, has been developed. The development of EHM into two forms is another merit of the model. A case study was conducted using laboratory experiment data to validate the practicality of the both semi-parametric and non-parametric EHMs. The performance of the newly-developed models is appraised using the comparison amongst the estimated results of these models and the other existing covariate-based hazard models. The comparison results demonstrated that both the semi-parametric and non-parametric EHMs outperform the existing covariate-based hazard models. Future research directions regarding to the new parameter estimation method in the case of time-dependent effects of covariates and missing data, application of EHM in both repairable and non-repairable systems using field data, and a decision support model in which linked to the estimated reliability results, are also identified.
Resumo:
This paper begins by providing an overview of bike share programs, followed by a critical examination of the growing body of literature on these programs. This synthesis of previous works, both peer-reviewed and grey, includes an identification of the current gaps in knowledge related to the impacts of bike sharing programs. This synthesis represents a critically needed evaluation of the current state of global bike share research, in order to better understand, and maximize the effectiveness of current and future programs. Several consistent themes have emerged within the growing body of research on bike share programs. Firstly, the importance bike share members place on convenience and value for money appears paramount in their motivation to sign up and use these programs. Secondly, and somewhat counter intuitively, scheme members are more likely to own and use private bicycles than non-members. Thirdly, users demonstrate a greater reluctance to wear helmets than private bicycle riders and helmets have acted as a deterrent in jurisdictions in which helmets are mandatory. Finally, and perhaps most importantly from a sustainable transport perspective, the majority of scheme users are substituting from sustainable modes of transport rather than the car.
Resumo:
The regulation of overweight trucks is of increasing importance. Quickly growing heavy vehicle volumes over-proportionally contribute to roadway damage. Raising maintenance costs and compromised road safety are also becoming a major concern to managing agencies. Minimizing pavement wear is done by regulating overloaded trucks on major highways at weigh stations. However, due to lengthy inspections and insufficient capacities, weigh stations tend to be inefficient. New practices, using Radio Frequency Identification (RFID) transponders and weigh-in-motion technologies, called preclearance programs, have been set up in a number of countries. The primary aim of this study is to investigate the current issues with regard to the implementation and operation of the preclearance program. The State of Queensland, Australia, is used as a case study. The investigation focuses on three aspects; the first emphasizes on identifying the need for improvement of the current regulation programs in Queensland. Second, the operators of existing preclearance programs are interviewed for their lessons-learned and the marketing strategies used for promoting their programs. The trucking companies in Queensland are interviewed for their experiences with the current weighing practices and attitudes toward the potential preclearance system. Finally, the estimated benefit of the preclearance program deployment in Queensland is analyzed. The penultimate part brings the former four parts together and provides the study findings and recommendations. The framework and study findings could be valuable inputs for other roadway agencies considering a similar preclearance program or looking to promote their existing ones.
Resumo:
Background Overweight and obesity has become a serious public health problem in many parts of the world. Studies suggest that making small changes in daily activity levels such as “breaking-up” sedentary time (i.e., standing) may help mitigate the health risks of sedentary behavior. The aim of the present study was to examine time spent in standing (determined by count threshold), lying, and sitting postures (determined by inclinometer function) via the ActiGraph GT3X among sedentary adults with differing weight status based on body mass index (BMI) categories. Methods Participants included 22 sedentary adults (14 men, 8 women; mean age 26.5 ± 4.1 years). All subjects completed the self-report International Physical Activity Questionnaire to determine time spent sitting over the previous 7 days. Participants were included if they spent seven or more hours sitting per day. Postures were determined with the ActiGraph GT3X inclinometer function. Participants were instructed to wear the accelerometer for 7 consecutive days (24 h a day). BMI was categorized as: 18.5 to <25 kg/m2 as normal, 25 to <30 kg/m2 as overweight, and ≥30 kg/m2 as obese. Results Participants in the normal weight (n = 10) and overweight (n = 6) groups spent significantly more time standing (after adjustment for moderate-to-vigorous intensity physical activity and wear-time) (6.7 h and 7.3 h respectively) and less time sitting (7.1 h and 6.9 h respectively) than those in obese (n = 6) categories (5.5 h and 8.0 h respectively) after adjustment for wear-time (p < 0.001). There were no significant differences in standing and sitting time between normal weight and overweight groups (p = 0.051 and p = 0.670 respectively). Differences were not significant among groups for lying time (p = 0.55). Conclusion This study described postural allocations standing, lying, and sitting among normal weight, overweight, and obese sedentary adults. The results provide additional evidence for the use of increasing standing time in obesity prevention strategies.