845 resultados para Box-Cox transformation and quintile-based capability indices
Resumo:
This manuscript is based on a PhD thesis submitted at the Institute of Social Anthropology at the University of Bern in 2014. The dissertation was part of the research project „Xinjiang Uyghur Autonomous Region and Chinese Territoriality. The Development of Infrastructure and Han Migration into the Region“ under the supervision of Prof. Dr. Heinzpeter Znoj and financed by the Swiss National Science Foundation SNSF. Madlen Kobi analyzes the architectural and socio-political transformation of public places and spaces in rapidly urbanizing southern Xinjiang, P.R. China, and in doing so pays particular attention to the cities of Aksu and Kaxgar. As the Xinjiang Uyghur Autonomous Region lies in between China and Central Asia, it is especially characterized by differing political, cultural, and religious influences, and, furthermore, due to its being a multiethnic region, by multiple identities. One might expect cultural and social identities in this area to be negotiated by referring to history, religion, or food. However, they also become visible by the construction and reconstruction, if not demolition, of public places, architectural landmarks, and private residences. Based on ethnographic fieldwork performed in 2011 and 2012, the study explores everyday life in a continuously transforming urban environment shaped by the interaction of the interests of government institutions, investment companies, the middle class, and migrant workers, among many other actors. Here, urban planning, modernization, and renewal form a highly sensitive lens through which the author inspects the tense dynamics of ethnic, religious, and class-based affiliations. She respects varieties and complexities while thoroughly grounding unfolding transformation processes in everyday lived experiences. The study provides vivid insights into how urban places and spaces in this western border region of China are constructed, created, and eventually contested.
Resumo:
Background and objective: Prescribers in rural and remote locations perceive that there are different influences on their prescribing compared with those experienced by urban prescribers. The aim of this study was to compare the motivations and perceived influences on general practitioners (GPs) when prescribing COX-2 inhibitors rather than conventional non-steroidal anti-inflammatory drugs (NSAIDs) between rural and urban-based GPs in Queensland, Australia. Methods: A questionnaire was administered to two geographically distinct groups of GPs, one urban (n = 67) and one rural (n = 67), investigating the reasons that the GP would prescribe a COX-2 inhibitor rather than a conventional NSAID or vice versa and also focusing on patients requesting a prescription for a COX-2 inhibitor. Results and discussion: A 51% response rate (n = 68) was achieved. The difference between the rural and the urban GPs was that the urban GPs were more likely to perceive that they were influenced to prescribe COX-2 inhibitors by their patients' knowledge of these new (at the time) drugs. GPs in both the rural and urban areas perceived the COX-2 selective inhibitors to be safer than conventional NSAIDs, and that there was little difference in terms of efficacy between the two drug classes. However, GPs from both of the study areas stated that conventional NSAIDs were preferred over COX-2 selective inhibitors, primarily due to their expense, if their patients were not at risk for developing a GI bleed. Conclusion: The motivations and perceived influences to prescribe a COX-2 inhibitor in rural and in urban areas of Queensland, Australia were very similar. Almost all surveyed GPs in rural and urban areas had patients request a prescription, or enquire about the COX-2 inhibitors. Urban GPs were more likely to feel pressured to prescribe a COX-2 inhibitor than their rural counterparts, agreeing with other research which found that patient pressure to prescribe appears to be greater in urban general practice.
Resumo:
Substantial amounts of nitrogen (N) fertiliser are necessary for commercial sugarcane production because of the large biomass produced by sugarcane crops. Since this fertiliser is a substantial input cost and has implications if N is lost to the environment, there are pressing needs to optimise the supply of N to the crops' requirements. The complexity of the N cycle and the strong influence of climate, through its moderation of N transformation processes in the soil and its impact on N uptake by crops, make simulation-based approaches to this N management problem attractive. In this paper we describe the processes to be captured in modelling soil and plant N dynamics in sugarcane systems, and review the capability for modelling these processes. We then illustrate insights gained into improved management of N through simulation-based studies for the issues of crop residue management, irrigation management and greenhouse gas emissions. We conclude by identifying processes not currently represented in the models used for simulating N cycling in sugarcane production systems, and illustrate ways in which these can be partially overcome in the short term. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper, a new differential evolution (DE) based power system optimal available transfer capability (ATC) assessment is presented. Power system total transfer capability (TTC) is traditionally solved by the repeated power flow (RPF) method and the continuation power flow (CPF) method. These methods are based on the assumption that the productions of the source area generators are increased in identical proportion to balance the load increment in the sink area. A new approach based on DE algorithm to generate optimal dispatch both in source area generators and sink area loads is proposed in this paper. This new method can compute ATC between two areas with significant improvement in accuracy compared with the traditional RPF and CPF based methods. A case study using a 30 bus system is given to verify the efficiency and effectiveness of this new DE based ATC optimization approach.
Resumo:
Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone condition. The objective of this work was to compare the Tropical Rapid Appraisal of Riparian Condition (TRARC) method to a satellite image based approach. TRARC was developed for rapid assessment of the environmental condition of savanna riparian zones. The comparison assessed mapping accuracy, representativeness of TRARC assessment, cost-effectiveness, and suitability for multi-temporal analysis. Two multi-spectral QuickBird images captured in 2004 and 2005 and coincident field data covering sections of the Daly River in the Northern Territory, Australia were used in this work. Both field and image data were processed to map riparian health indicators (RHIs) including percentage canopy cover, organic litter, canopy continuity, stream bank stability, and extent of tree clearing. Spectral vegetation indices, image segmentation and supervised classification were used to produce RHI maps. QuickBird image data were used to examine if the spatial distribution of TRARC transects provided a representative sample of ground based RHI measurements. Results showed that TRARC transects were required to cover at least 3% of the study area to obtain a representative sample. The mapping accuracy and costs of the image based approach were compared to those of the ground based TRARC approach. Results proved that TRARC was more cost-effective at smaller scales (1-100km), while image based assessment becomes more feasible at regional scales (100-1000km). Finally, the ability to use both the image and field based approaches for multi-temporal analysis of RHIs was assessed. Change detection analysis demonstrated that image data can provide detailed information on gradual change, while the TRARC method was only able to identify more gross scale changes. In conclusion, results from both methods were considered to complement each other if used at appropriate spatial scales.
Resumo:
Automatically generating maps of a measured variable of interest can be problematic. In this work we focus on the monitoring network context where observations are collected and reported by a network of sensors, and are then transformed into interpolated maps for use in decision making. Using traditional geostatistical methods, estimating the covariance structure of data collected in an emergency situation can be difficult. Variogram determination, whether by method-of-moment estimators or by maximum likelihood, is very sensitive to extreme values. Even when a monitoring network is in a routine mode of operation, sensors can sporadically malfunction and report extreme values. If this extreme data destabilises the model, causing the covariance structure of the observed data to be incorrectly estimated, the generated maps will be of little value, and the uncertainty estimates in particular will be misleading. Marchant and Lark [2007] propose a REML estimator for the covariance, which is shown to work on small data sets with a manual selection of the damping parameter in the robust likelihood. We show how this can be extended to allow treatment of large data sets together with an automated approach to all parameter estimation. The projected process kriging framework of Ingram et al. [2007] is extended to allow the use of robust likelihood functions, including the two component Gaussian and the Huber function. We show how our algorithm is further refined to reduce the computational complexity while at the same time minimising any loss of information. To show the benefits of this method, we use data collected from radiation monitoring networks across Europe. We compare our results to those obtained from traditional kriging methodologies and include comparisons with Box-Cox transformations of the data. We discuss the issue of whether to treat or ignore extreme values, making the distinction between the robust methods which ignore outliers and transformation methods which treat them as part of the (transformed) process. Using a case study, based on an extreme radiological events over a large area, we show how radiation data collected from monitoring networks can be analysed automatically and then used to generate reliable maps to inform decision making. We show the limitations of the methods and discuss potential extensions to remedy these.
Resumo:
This thesis describes research into business user involvement in the information systems application building process. The main interest of this research is in establishing and testing techniques to quantify the relationships between identified success factors and the outcome effectiveness of 'business user development' (BUD). The availability of a mechanism to measure the levels of the success factors, and quantifiably relate them to outcome effectiveness, is important in that it provides an organisation with the capability to predict and monitor effects on BUD outcome effectiveness. This is particularly important in an era where BUD levels have risen dramatically, user centred information systems development benefits are recognised as significant, and awareness of the risks of uncontrolled BUD activity is becoming more widespread. This research targets the measurement and prediction of BUD success factors and implementation effectiveness for particular business users. A questionnaire instrument and analysis technique has been tested and developed which constitutes a tool for predicting and monitoring BUD outcome effectiveness, and is based on the BUDES (Business User Development Effectiveness and Scope) research model - which is introduced and described in this thesis. The questionnaire instrument is designed for completion by 'business users' - the target community being more explicitly defined as 'people who primarily have a business role within an organisation'. The instrument, named BUD ESP (Business User Development Effectiveness and Scope Predictor), can readily be used with survey participants, and has been shown to give meaningful and representative results.
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
Resumo:
The coastal districts, as an intersection of two perfectly different ecosystems of dry land and sea, is one of the most complicated and the richest natural system on earth. Considering these areas are constantly exposed to aggregation of water pollutants and also consequence resulting from construction and development activities, they are very vulnerable. Therefore, "sensitive Coastal areas" has become a common word in the related subjects to marine environment recently. The said title relates to the areas of the coastal lines which are vulnerable to the natural condition or human actions because of ecological, social, economic, educational and research importance, also they need particular supports. The southern coasts of Caspian Sea, In Iran prominent samples are of these sensitive areas which their environment are exposed to demolition and destruction intensely, due to increasing and uncontrolled development. The first stage of protecting and managing the coastal areas is identifying sensitive Coastal areas and broadening the Coasts. In this survey, we attempted to examine a definite area in the southern coasts of Caspian Sea. In Iran, by profiting from the world experiences and concluded researches in Iran especially the concluded studies by marine environment office and the Environment protection organization on the subject of determination criteria of the sensitive ecological districts. For this purpose (In Gilan Province) Boujagh national park district which is located in the mouth of sefidroud river and also is possessed of the special ecological and environmental features and distinctions. In this survey, first they said district is divided proportionally on the basis of using a grid system in order to identify the sensitive ecological districts and broaden the coast, and then the desired indices have been determined and scored by numeral valuation method in each unit and then analysis has been done by using of the geography information system (GIS) and final has estimated economic valuation of sensitive ecological areas that is presented in this essay.
Resumo:
Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.
Resumo:
The main purpose of this study is to assess the relationship between four bioclimatic indices for cattle (environmental stress, heat load, modified heat load, and respiratory rate predictor indices) and three main milk components (fat, protein, and milk yield) considering uncertainty. The climate parameters used to calculate the climate indices were taken from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA) reanalysis from 2002 to 2010. Cow milk data were considered for the same period from April to September when the cows use the natural pasture. The study is based on a linear regression analysis using correlations as a summarizing diagnostic. Bootstrapping is used to represent uncertainty information in the confidence intervals. The main results identify an interesting relationship between the milk compounds and climate indices under all climate conditions. During spring, there are reasonably high correlations between the fat and protein concentrations vs. the climate indices, whereas there are insignificant dependencies between the milk yield and climate indices. During summer, the correlation between the fat and protein concentrations with the climate indices decreased in comparison with the spring results, whereas the correlation for the milk yield increased. This methodology is suggested for studies investigating the impacts of climate variability/change on food and agriculture using short term data considering uncertainty.
Resumo:
OBJECTIVES: The aims of this study were to establish a Colombian smoothed centile charts and LMS tables for tríceps, subscapular and sum tríceps+subscapular skinfolds; appropriate cut-offs were selected using receiver operating characteristic analysis based in a populationbased sample of schoolchildren in Bogota, Colombia and to compare them with international studies. METHODS: A total of 9 618 children and adolescents attending public schools in Bogota, Colombia (55.7% girls; age range of 9–17.9 years). Height, weight, body mass index (BMI), waist circumference, triceps and subscapular skinfold measurements were obtained using standardized methods. We have calculated tríceps+subscapular skinfold (T+SS) sum. Smoothed percentile curves for triceps and subscapular skinfold thickness were derived by the LMS method. Receiver operating characteristics curve (ROC) analyses were used to evaluate the optimal cut-off point of tríceps, subscapular and sum tríceps+subscapular skinfolds for overweight and obesity based on the International Obesity Task Force (IOTF) definitions. Data were compared with international studies. RESULTS: Subscapular, triceps skinfolds and T+SS were significantly higher in girls than in boys (P <0.001). The median values for triceps, subscapular as well as T+SS skinfold thickness increased in a sex-specific pattern with age. The ROC analysis showed that subscapular, triceps skinfolds and T+SS have a high discrimination power in the identification of overweight and obesity in the sample population in this study. Based on the raw non-adjusted data, we found that Colombian boys and girls had high triceps and subscapular skinfolds values than their counterparts from Spain, UK, German and US. CONCLUSIONS: Our results provide sex- and age-specific normative reference standards for the triceps and subscapular skinfold thickness values in a large, population-based sample of 3 schoolchildren and adolescents from an Latin-American population. By providing LMS tables for Latin-American people based on Colombian reference data, we hope to provide quantitative tools for the study of obesity and its complications.
Enhancing predictive capability of models for solubility and permeability in polymers and composites
Resumo:
The interpretation of phase equilibrium and mass transport phenomena in gas/solvent - polymer system at molten or glassy state is relevant in many industrial applications. Among tools available for the prediction of thermodynamics properties in these systems, at molten/rubbery state, is the group contribution lattice-fluid equation of state (GCLF-EoS), developed by Lee and Danner and ultimately based on Panayiotou and Vera LF theory. On the other side, a thermodynamic approach namely non-equilibrium lattice-fluid (NELF) was proposed by Doghieri and Sarti to consistently extend the description of thermodynamic properties of solute polymer systems obtained through a suitable equilibrium model to the case of non-equilibrium conditions below the glass transition temperature. The first objective of this work is to investigate the phase behaviour in solvent/polymer at glassy state by using NELF model and to develop a predictive tool for gas or vapor solubility that could be applied in several different applications: membrane gas separation, barrier materials for food packaging, polymer-based gas sensors and drug delivery devices. Within the efforts to develop a predictive tool of this kind, a revision of the group contribution method developed by High and Danner for the application of LF model by Panayiotou and Vera is considered, with reference to possible alternatives for the mixing rule for characteristic interaction energy between segments. The work also devotes efforts to the analysis of gas permeability in polymer composite materials as formed by a polymer matrix in which domains are dispersed of a second phase and attention is focused on relation for deviation from Maxwell law as function of arrangement, shape of dispersed domains and loading.
Resumo:
To estimate the impact of aging and diabetes on insulin sensitivity, beta-cell function, adipocytokines, and incretin production. Hyperglycemic clamps, arginine tests and meal tolerance tests were performed in 50 non-obese subjects to measure insulin sensitivity (IS) and insulin secretion as well as plasma levels of glucagon, GLP-1 and GIP. Patients with diabetes and healthy control subjects were divided into the following groups: middle-aged type 2 diabetes (MA-DM), aged Type 2 diabetes (A-DM) and middle-aged or aged subjects with normal glucose tolerance (MA-NGT or A-NGT). IS, as determined by the homeostasis model assessment, glucose infusion rate, and oral glucose insulin sensitivity, was reduced in the aged and DM groups compared with MA-NGT, but it was similar in the MA-DM and A-DM groups. Insulinogenic index, first and second phase insulin secretion and the disposition indices, but not insulin response to arginine, were reduced in the aged and DM groups. Postprandial glucagon production was higher in MA-DM compared to MA-NGT. Whereas the GLP-1 production was reduced in A-DM, no differences between groups were observed in GIP production. In non-obese subjects, diabetes and aging impair insulin sensitivity. Insulin production is reduced by aging, and diabetes exacerbates this condition. Aging associated defects superimposed diabetic physiopathology, particularly regarding GLP-1 production. On the other hand, the glucose-independent secretion of insulin was preserved. Knowledge of the complex relationship between aging and diabetes could support the development of physiopathological and pharmacological based therapies.