973 resultados para Bothrops jararacussu snake
Resumo:
Foram estudados os Cephalobaenidae (Pentastomida), depositados na coleção helmintológica do Instituto Oswaldo Cruz e na coleção de parasitologia do Instituto Butantan. São redescritas e discutidas as espécies, Cephalobaena tetrapoda, C. freitasi, C. giglioli, Raillietiella furcocerca e Mahafaliella venteli. Esses parasitas foram coletados dos répteis: Lachesis sp., Drymarchon c. corais, Xenodon merremii, Crotatus terrificus, Amphisbaena sp., Tropidurus torquatus, Bothrops atrox, Mabuya punctata e de Bufo paracnemis (anfíbio).
Resumo:
Small molecular weight compounds from Mandevilla velutina and from Eclipta prostata were found to be active against snakebite.
Resumo:
Colour polymorphism is widespread among vertebrates and plays important roles in prey-predator interactions, thermoregulation, social competition, and sexual selection. However, the genetic mechanisms involved in colour variation have been studied mainly in domestic mammals and birds, whereas information on wild animals remains scarce. Interestingly, the pro-opiomelanocortin gene (POMC) gives rise to melanocortin hormones that trigger melanogenesis (by binding the melanocortin-1-receptor; Mc1r) and other physiological and behavioural functions (by binding the melanocortin receptors Mc1-5rs). Owing to its pleiotropic effect, the POMC gene could therefore account for the numerous covariations between pigmentation and other phenotypic traits. We screened the POMC and Mc1r genes in 107 wild asp vipers (Vipera aspis) that can exhibit four discrete colour morphs (two unpatterned morphs: concolor or melanistic; two patterned morphs: blotched or lined) in a single population. Our study revealed a correlation between a single nucleotide polymorphism situated within the 3-untranslated region of the POMC gene and colour variation, whereas Mc1r was not found to be polymorphic. To the best of our knowledge, we disclose for the first time a relationship between a mutation at the POMC gene and coloration in a wild animal, as well as a correlation between a genetic marker and coloration in a snake species. Interestingly, similar mutations within the POMC 3-untranslated region are linked to human obesity and alcohol and drug dependence. Combined with our results, this suggests that the 3-untranslated region of the POMC gene may play a role in its regulation in distant vertebrates.
Resumo:
The objective of the present study was to investigate the prevalence of Cryptosporidium (Apicomplexa, Cryptosporidiidae) in the snake Crotalus durissus terrificus (Serpentes, Viperidae). Fifty animals were evaluated for the presence of oocysts of Cryptosporidium sp. at the time of arrival and 30 and 60 days later. Intestinal washings with saline solution (1% body weight), fecal samples, and organ scrapings were collected during the study. Oocysts were concentrated by an ether-phosphate-buffered saline sedimentation technique and then separated by a density gradient centrifugation technique. Smears were made with the sediment and submitted to modified acid-fast and auramine-rhodamine staining. Cryptosporidium-positive smears were used as controls for the experimental findings. The overall prevalence of Cryptosporidium sp. oocysts was 14%. Among the positive snakes, oocysts were detected only in the intestinal washing in two specimens, only in the feces in four specimens, and in both materials at least once in one specimen. The positive snakes were predominantly from Santa Maria da Serra city State of São Paulo (57.1%). We also observed that all of the examinations that presented positive results were obtained at least 27 days after the capture of the animals.
Resumo:
BACKGROUND: Glioblastoma multiforme (GBM), a highly invasive and vascular cancer, responds poorly to conventional cytotoxic therapy. Integrins, widely expressed in GBM and tumor vasculature, mediate cell survival, migration and angiogenesis. Cilengitide is a potent alphavbeta3 and alphavbeta5 integrin inhibitor. OBJECTIVE: To summarize the preclinical and clinical experience with cilengitide for GBM. METHODS: Preclinical studies and clinical trials evaluating cilengitide for GBM were reviewed. RESULTS/CONCLUSIONS: Cilengitide is active and synergizes with external beam radiotherapy in preclinical GBM models. In clinical trials for recurrent GBM, single-agent cilengitide has antitumor benefits and minimal toxicity. Among newly diagnosed GBM patients, single-arm studies incorporating cilengitide into standard external beam radiotherapy/temozolomide have shown encouraging activity with no increased toxicity and have led to a planned randomized Phase III trial.
Resumo:
Tuberculosis (TB - Mycobacterium tuberculosis) is an ancient infectious disease that has appeared once again as a serious worldwide health problem and now comprises the second leading cause of death resulting from a single infection. The prevalence of multidrug resistance (MDR) TB is increasing and therapeutic options for treatment are not always accessible; in fact, some patients do not respond to the available drugs. Therefore, there is an urgent need to develop novel anti-TB agents. The aim of the present study was to screen extracts of Aristolochia taliscana, a plant used in traditional Mexican medicine to treat cough and snake bites, for antimycobacterial activity. The hexanic extract of A. taliscana was tested by microdilution alamar blue assay against Mycobacterium strains and bioguided fractionation led to the isolation of the neolignans licarin A, licarin B and eupomatenoid-7, all of which had antimycobacterial activity. Licarin A was the most active compound, with minimum inhibitory concentrations of 3.12-12.5 μg/mL against the following M. tuberculosis strains: H37Rv, four mono-resistant H37Rv variants and 12 clinical MDR isolates, as well as against five non-tuberculous mycobacteria (NTM) strains. In conclusion, licarin A represents a potentially active anti-TB agent to treat MDR M. tuberculosis and NTM strains.
Resumo:
Summary Skin is the essential interface between our body and its environment; not only does it prevent water loss and protect us from external insults it also plays an essential role in the central nervous system acting as a major sense organ primarily for touch and pain. The main cell type present in skin, keratinocyte, undergoes a differentiation process leading to the formation of this protecting barrier. This work is intended to contribute to the understanding of how keratinocyte differentiates and skin functions. To do this, we studied two genetic skin diseases: Erythrokeratodermia variabilis and Mal de Meleda. Our approach was to examine the expression and localization of proteins implicated in these two pathologies in normal and diseased tissues and to determine the influence of mutant proteins at the molecular and cellular levels. Connexins are major components of gap junctions, channels allowing direct communication between cells. Our laboratory has identified mutations in both connexin 30.3 (Cx30.3) and 31 (Cx31) to be causally involved in erythrokeratodermia variabilis (EKV), an autosomal dominant disorder of keratinization. In the first chapter, we show a new mutation of Cx31, L209P-Cx31, in 3 EKV patients, extending the field of EKV-causing mutations although the mechanism by which connexin mutations lead to the disease is unclear. In the second chapter, we studied the effect of F137L-Cx30.3 on expression, trafficking and localization of cotransfected Cx31 and Cx30.3 in connexin-deficient HeLa cells. The F137 amino acid, highly conserved in connexin family, is oriented towards the channel pore and F137L mutation in either Cx30.3 or Cx31 lead to EKV. As two genes can lead to EKV when mutated, our hypothesis was that Cx31 and Cx30.3 might cooperate at a molecular level. We were able to demonstrate a physical interaction between Cx31 and Cx30.3. The presence of F137L-Cx30.3 disturbed the trafficking of both connexins, less connexins were integrated into gap junctions and thus, the coupling between cell was diminished. Connexins formed in the presence of F137L-Cx30.3 are degraded at their exit from the endoplasmic reticulum. In conclusion, our results indicate that the genetic heterogeneity of EKV is due to mutations in two interacting proteins. F137L-Cx30.3 has a dominant negative effect and affects Cx31, disturbing cellular communication in epidermal cells. Mal de Meleda is an autosomal recessive inflammatory and a keratotic palmoplantar skin disorder due to mutations in SLURP1 (secreted LY6/PLAUR-related protein 1). SLURP1 belongs to the LY6/PLAUR family of proteins and has the particularity of being secreted instead of being GPI-anchored. The high degree of structural similarity between SLURP1 and the three fingers motif of snake neurotoxins and LYNX 1-C suggests that this protein could interact with the neuronal acetylcholine receptors. In the third chapter, we show that SLURP1 potentiates responses of the a7 nicotinic acetylcholine receptor (nAchR) to acetylcholine. These results identify SLURP1 as a secreted epidermal neuromodulator that is likely to be essential for palmoplantar skin. In the fourth chapter, we show that SLURP1 is expressed in the granular layer of the epidermis but is absent from skin biopsies of Mal de Meleda patients. SLURP1 is also present in secretions such as sweat, tears or saliva. An in vitro analysis on two mutant of SLURP-I demonstrates that W15R-SLURP1 is absent in cells while G86R-SLURP1 is expressed and secreted, suggesting that SLURP1 can lead to the disease by either an absent or an abnormal protein. Finally, in the fifth chapter, we analyse the expression and biological properties of other LY6/PLAUR members, clustered around SLURP] on chromosome 8. Their GPI-anchored or secreted status were analysed in vitro. SLURP1, LYNX1-A and -B are secreted while LYPDC2 and LYNX 1-C are GPI anchored. Three of these proteins are expressed in the epidermis and in cultured keratinocytes. These results suggest that these LY6/PLAUR members may have an important role in skin homeostasis. Résumé Résumé La peau est la barrière essentielle entre notre corps et l'environnement, nous protégeant des agressions extérieures, de la déshydratation et assurant aussi un rôle dans le système nerveux central en tant qu'organe du toucher et de la douleur. Le principal type de cellules présent dans la peau est le kératinocyte qui suit un processus de différenciation aboutissant à la formation de cette barrière protectrice. Ce travail est destiné à comprendre la différenciation des kératinocytes et le fonctionnement de la peau. Pour cela, nous avons étudié deux maladies génodermatoses : l'Erthrokeratodermia Variabilis (EKV) et le Mal de Meleda. Nous avons examiné l'expression et la localisation des protéines impliquées dans ces deux pathologies dans des tissus normaux et malades puis déterminé l'influence des protéines mutantes aux niveaux moléculaires et cellulaires. Les connexines (Cx) sont les composants majeurs des jonctions communicantes, canaux permettant la communication directe entre les cellules. Notre laboratoire a identifié des mutations dans les Cx30.3 et Cx31 comme responsables de l'EKV, génodermatose de transmission autosomique dominante. Dans le ler chapitre, nous décrivons une nouvelle mutation de Cx31, L209-Cx31, et contribuons à l'établissement du catalogue des mutations de Cx31 entraînant cette maladie. Cependant, le mécanisme par lequel les mutations de Cx31 et C3x0.3 provoquent l'EKV est inconnu. Dans le 2ème chapitre, nous étudions les effets de la mutation F137L-Cx30.3 sur l'expression, le trafic et la localisation des Cx31 et Cx30.3 transfectées dans des cellules HeLa, déficientes en connexines. Comme deux gènes peuvent causer une EKV quand ils sont mutés, notre hypothèse était que Cx31 et Cx30.3 pourraient coopérer au niveau moléculaire. Nous avons montré l'existence d'une interaction physique entre ces deux connexines. La présence de la mutation F137L-Cx30.3 perturbe le trafic des deux connexines, moins de connexines sont intégrées dans les jonctions communicantes et donc le couplage entre les cellules est diminué. Les connexons formés en présence de cette mutation sont dégradés à leur sortie du réticulum endoplasmique. En conclusion, nos résultats indiquent que l'hétérogénéité génétique de EKV est due à des mutations dans deux protéines qui interagissent. F137L-Cx30.3 a un effet dominant négatif et affecte Cx31, perturbant la communication entre les cellules épidermiques. Le Mal de Meleda est une maladie récessive de la peau palmoplantaire due à des mutations dans SLURP1. SLURP1 appartient à la famille des protéines contenant un domaine LY6/PLAUR et a la particularité d'être sécrétée. La grande homologie de structure existant entre SLURP1, les neurotoxines de serpent et LYNX1-C suggère que la protéine pourrait interagir avec des récepteurs à acétylcholine (Ach). Dans le 3ème chapitre, nous montrons que SLURP1 module la réponse à l'Ach du récepteur nicotinique α7. Ces résultats identifient SLURP1 comme un neuromodulateur épidermique sécrété, probablement essentiel pour la peau palmoplantaire. Dans le 4ème chapitre, nous montrons que SLURP1 est exprimé dans la couche granuleuse de l'épiderme et qu'il est absent des biopsies des patients. SLURP1 a aussi été détecté dans des sécrétions telles que la sueur, les lamies et la salive. Une analyse in vitro de deux mutants de SLURP1 a montré que W15R-SLURP1 est absent des cellules tandis que G86R-SLURP1 est exprimé et sécrété, suggérant qu'une absence ou une anomalie de SLURP1 peuvent causer la maladie. Finalement, dans le 5ème chapitre, nous analysons l'expression et les propriétés biologiques d'autres membres de la famille LY6/PLAUR localisés autour de SLURP1 sur le chromosome 8. Leur statut de protéines sécrétées ou liées à la membrane par une ancre GPI est analysé in vitro. SLURP1, LYNXI-A et -B sont sécrétées alors que LYPDC2 et LYNX1-C sont liés à la membrane. Trois de ces protéines sont exprimées dans l'épiderme et dans des kératinocytes cultivés. Ces résultats suggèrent que la famille LY6/PLAUR pourrait avoir un rôle important dans l'homéostasie de la peau.
Non-traumatic spinal cord ischaemia in childhood - clinical manifestation, neuroimaging and outcome.
Resumo:
BACKGROUND: Spinal cord ischaemia is rare in childhood and information on clinical presentation and outcome is scarce. METHODS: This is a retrospective analysis of eight patients and 75 additional cases from the literature. Data search included: patient's age, primary manifestation, risk factors, neuroimaging and outcome. RESULTS: Five female and three male patients gave consent to participate. Mean age was 12.5 years (10-15 years). Six patients presented with paraplegia; this was preceded by pain in four. Brown Sequard syndrome and quadriparesis were the two others' presenting condition. Sensation levels were thoracolumbar in seven cases. Bladder dysfunction only or bladder and bowel dysfunction were reported in eight and five patients respectively. Time to maximal symptom manifestation was <12 h in 7/8. Risk factors included surgery, minor trauma, recent infection, and thrombophilia. Mean follow-up was 3.3 years (0.25-6.3 years). Three patients remained wheelchair-dependent and three patients were ambulatory without aid. Bladder function recovered fully in five children. Most affected aspects of quality of life were physical and mental well-being and self-perception. T2-weighted-MR images showed pencil-like hyperintensity (8/8) in sagittal and H-shaped or snake-eyes-like lesion (6/8) in axial views. Analyses of all 83 patients were in congruence with the above results of the study group. CONCLUSION: Spinal cord ischaemia in childhood presenting with pain, paraplegia, and bladder dysfunction has high morbidity concerning motor problems and quality of life. Acute arterial ischaemic event in children seems similar to adult events with respect to clinical presentation and, surprisingly, also in outcome.
Resumo:
Con relación a un programa de monitoreo de la especie en los alrededores de las islas Lobos de Afuera, se estudiaron aspectos biológicos pesqueros, abundancia relativa, y esfuerzo pesqueros de la anguila común en relación a parámetros ambientales.
Resumo:
Although the adder (Vipera berus) has a large distribution area, this species is particularly threatened in Western Europe due to high habitat fragmentation and human persecution. We developed 13 new microsatellite markers in order to evaluate population structure and genetic diversity in the Swiss and French Jura Mountains, where the species is limited to only a few scattered populations. We found that V. berus exhibits a considerable genetic differentiation among populations (global F-ST = 0.269), even if these are not geographically isolated. Moreover, the genetic diversity within populations in the Jura Mountains and in the less perturbed Swiss Alps is significantly lower than in other French populations, possibly due to post-glacial recolonisation processes. Finally, in order to minimize losses of genetic diversities within isolated populations, suggestions for the conservation of this species in fragmented habitats are proposed.
Resumo:
Isolated limb perfusion (ILP) with melphalan and tumor necrosis factor (TNF)-α is used to treat bulky, locally advanced melanoma and sarcoma. However, TNF toxicity suggests a need for better-tolerated drugs. Cilengitide (EMD 121974), a novel cyclic inhibitor of alpha-V integrins, has both anti-angiogenic and direct anti-tumor effects and is a possible alternative to TNF in ILP. In this study, rats bearing a hind limb soft tissue sarcoma underwent ILP using different combinations of melphalan, TNF and cilengitide in the perfusate. Further groups had intra-peritoneal (i.p.) injections of cilengitide or saline 2 hr before and 3 hr after ILP. A 77% response rate (RR) was seen in animals treated i.p. with cilengitide and perfused with melphalan plus cilengitide. The RR was 85% in animals treated i.p. with cilengitide and ILP using melphalan plus both TNF and cilengitide. Both RRs were significantly greater than those seen with melphalan or cilengitide alone. Histopathology showed that high RRs were accompanied by disruption of tumor vascular endothelium and tumor necrosis. Compared with ILP using melphalan alone, the addition of cilengitide resulted in a three to sevenfold increase in melphalan concentration in tumor but not in muscle in the perfused limb. Supportive in vitro studies indicate that cilengitide both inhibits tumor cell attachment and increases endothelial permeability. Since cilengitide has low toxicity, these data suggest the agent is a good alternative to TNF in the ILP setting.
Resumo:
Prokineticin, 1 (PROK1) and prokineticin 2 (PROK2), are two closely related proteins that were identified as the mammalian homologs of their two amphibian homologs, mamba intestinal toxin (MIT-1) and Bv8. MIT-1 was initially identified as a non-toxic constituent in the venom of the black mamba snake (Dendroaspis polylepis) (Joubert and Strydom, 1980) while Bv8 was identified in the skin secretion of the toad, Bombina variegate (Mollay et al., 1999). All three homologs stimulate gastrointestinal motility thus accounting for their family name "prokineticins" (Schweitz et al., 1990, 1999). However, since its initial description, both PROK1 and PROK2 have been found to regulate a dazzling array of biological functions throughout the body. In particular, PROK1 acts as a potent angiogenic mitogen on endocrine vascular epithelium, thus earning its other name, Endocrine gland-vascular endothelial factor (EG-VEGF) (LeCouter et al., 2002). In contrast, the PROK2 signaling pathway is a critical regulator of olfactory bulb morphogenesis and sexual maturation in mammals and this function is the focus of this review.
Resumo:
In terrestrial snakes, many cases of intraspecific shifts in dietary habits as a function of predator sex and body size are driven by gape-limitation - and hence, are most common in species that feed on relatively large prey, and exhibit a wide body-size range. Our data on seasnakes reveal an alternative mechanism for intraspecific niche partitioning, based on sex-specific seasonal anorexia induced by reproductive activities. Turtle-headed seasnakes (Emydocephalus annulatus) on coral reefs in the New Caledonian Lagoon feed entirely on the eggs of demersal-spawning fishes. DNA sequence data (cytochrome b gene) on eggs that we palpated from stomachs of 37 snakes showed that despite this ontogenetic-stage specialization, the prey come from a taxonomically diverse array of species including damselfish (41% of samples, at least 5 species), blennies (41%, 4 species) and gobies (19%, 5 species). The composition of snake diets shifted seasonally (with damselfish dominating in winter but not summer), presumably reflecting seasonality of fish reproduction. That seasonal shift affects male and female snakes differently, because reproduction is incompatible with foraging. Adult female seasnakes ceased feeding when they became heavily distended with developing embryos in late summer, and males ceased feeding while they were mate-searching in winter. The sex divergence in foraging habits may be amplified by sexual size dimorphism; females grow larger than males, and larger snakes (of both sexes) feed more on damselfish (which often lay their eggs in exposed sites) than on blennies and gobies (whose eggs are hidden within narrow crevices). Specific features of reproductive biology of coral-reef fish (seasonality and nest type) have generated intraspecific niche partitioning in these seasnakes, by mechanisms different from those that apply to terrestrial snakes.
Resumo:
In order to contribute to the debate about southern glacial refugia used by temperate species and more northern refugia used by boreal or cold-temperate species, we examined the phylogeography of a widespread snake species (Vipera berus) inhabiting Europe up to the Arctic Circle. The analysis of the mitochondrial DNA (mtDNA) sequence variation in 1043 bp of the cytochrome b gene and in 918 bp of the noncoding control region was performed with phylogenetic approaches. Our results suggest that both the duplicated control region and cytochrome b evolve at a similar rate in this species. Phylogenetic analysis showed that V. berus is divided into three major mitochondrial lineages, probably resulting from an Italian, a Balkan and a Northern (from France to Russia) refugial area in Eastern Europe, near the Carpathian Mountains. In addition, the Northern clade presents an important substructure, suggesting two sequential colonization events in Europe. First, the continent was colonized from the three main refugial areas mentioned above during the Lower-Mid Pleistocene. Second, recolonization of most of Europe most likely originated from several refugia located outside of the Mediterranean peninsulas (Carpathian region, east of the Carpathians, France and possibly Hungary) during the Mid-Late Pleistocene, while populations within the Italian and Balkan Peninsulas fluctuated only slightly in distribution range, with larger lowland populations during glacial times and with refugial mountain populations during interglacials, as in the present time. The phylogeographical structure revealed in our study suggests complex recolonization dynamics of the European continent by V. berus, characterized by latitudinal as well as altitudinal range shifts, driven by both climatic changes and competition with related species.