977 resultados para Bone development
Resumo:
We modified the noninvasive, in vivo technique for strain application in the tibiae of rats (Turner et al,, Bone 12:73-79, 1991), The original model applies four-point bending to right tibiae via an open-loop, stepper-motor-driven spring linkage, Depending on the magnitude of applied load, the model produces new bone formation at periosteal (Ps) or endocortical surfaces (Ec.S). Due to the spring linkage, however, the range of frequencies at which loads can be applied is limited. The modified system replaces this design with an electromagnetic vibrator. A load transducer in series with the loading points allows calibration, the loaders' position to be adjusted, and cyclic loading completed under load central as a closed servo-loop. Two experiments were conducted to validate the modified system: (1) a strain gauge was applied to the lateral surface of the right tibia of 5 adult female rats and strains measured at applied loads from 10 to 60 N; and (2) the bone formation response was determined in 28 adult female Sprague-Dawley rats. Loading was applied as a haversine wave with a frequency of 2 Hz for 18 sec, every second day for 10 days. Peak bending loads mere applied at 33, 40, 52, and 64 N, and a sham-loading group tr as included at 64 N, Strains in the tibiae were linear between 10 and 60 N, and the average peak strain at the Ps.S at 60 N was 2664 +/- 250 microstrain, consistent with the results of Turner's group. Lamellar bone formation was stimulated at the Ec.S by applied bending, but not by sham loading. Bending strains above a loading threshold of 40 N increased Ec Lamellar hone formation rate, bone forming surface, and mineral apposition rate with a dose response similar to that reported by Turner et al, (J Bone Miner Res 9:87-97, 1994). We conclude that the modified loading system offers precision for applied loads of between 0 and 70 N, versatility in the selection of loading rates up to 20 Hz, and a reproducible bone formation response in the rat tibia, Adjustment of the loader also enables study of mechanical usage in murine tibia, an advantage with respect to the increasing variety of transgenic strains available in bone and mineral research. (Bone 23:307-310; 1998) (C) 1998 by Elsevier Science Inc. All rights reserved.
Resumo:
In vertebrates, excess all-trans retinoic acid (RA) applied during axis formation leads to the apparent truncation of anterior structures. In this study we sought to determine the type of defects caused by ectopic RA on the development of the ascidian Herdmania curvata. We demonstrate that H. curvata embryos cultured in the presence of RA develop into larvae whose trunks are shortened and superficially resemble those of early metamorphosing postlarvae. Despite RA-treated larvae lacking papillar structures they respond normally to natural cues that induce metamorphosis, indicating that chemosensory functionality previously mapped to the most anterior region of normal larvae is unaffected by RA. Excess RA applied during postlarval development leads to a graded loss of the juvenile pharynx, apparently by respecifying anterior endoderm to a more posterior fate. This structure is considered homologous to the gill slits of amphioxus. which are also lost upon RA treatment. This suggests that RA may have had a role in the development of the pharynx of the ancestral chordate and that this function has been maintained in ascidians and cephalochordates and lost in vertebrates.
Resumo:
Bracken fern (Pteridium spp.) produces cancer of the urinary bladder and oesophagus in grazing animals and is a suspected human carcinogen, The carcinogenic principle ptaquiloside (PT), when activated to a dienone (APT), forms DNA adducts which eventually leads to tumor. Two groups of female Sprague-Dawley rats were given a chronic dose of 3 mg APT weekly for 10 weeks either by intravenous (iv) tail vein or by intragastric (ig) route, A third group was given a weekly dose of 6 mg of APT for 3 weeks by the ig route corresponding to acute dosing. Both chronic iv and ig dosed animals showed ischemic tubular necrosis in the kidney but only iv dosed animals developed adenocarcinomas of the mammary glands. Acutely dosed ig animals produced apoptotic bodies in the liver, necrosis of blood cell precursors in the bone marrow and ischemic tubular necrosis in the kidney but they did not develop tumors, No mutations were found in the H-ras and p53 genes in the mammary glands of either the ig rats or the tumor-bearing iv rats. However, the mammary glands of a fourth group of rats, which received APT by iv and killed before tumor development, carried Pu to Pu and Pu to Py double mutations in codons 58 and 59 of H-ras. This study indicates that the route of administration plays a role in the nature of the disease expression from ptaquiloside exposure. In addition to confirming the role of APT in the PT-induced carcinogenesis our finding suggests that activation of H-ras is an early event in the PT-carcinogenesis model. (C) 1998 Academic Press.
Resumo:
Purpose, An integrated ionic mobility-pore model for epidermal iontophoresis is developed from theoretical considerations using both the free volume and pore restriction forms of the model for a range of solute radii (r(j)) approaching the pore radii (r(p)) as well as approximation of the pore restriction form for r(j)/r(p) < 0.4. In this model, we defined the determinants for iontophoresis as solute size (defined by MV, MW or radius), solute mobility, solute shape, solute charge, the Debye layer thickness, total current applied, solute concentration, fraction ionized, presence of extraneous ions (defined by solvent conductivity), epidermal permselectivity, partitioning rates to account for interaction of unionized and ionized lipophilic solutes with the wall of the pore and electroosmosis. Methods, The ionic mobility-pore model was developed from theoretical considerations to include each of the determinants of iontophoretic transport. The model was then used to reexamine iontophoretic flux conductivity and iontophoretic flux-fraction ionized literature data on the determinants of iontophoretic flux. Results. The ionic mobility-pore model was found to be consistent with existing experimental data and determinants defining iontophoretic transport. However, the predicted effects of solute size on iontophoresis are more consistent with the pore-restriction than free volume form of the model. A reanalysis of iontophoretic flux-conductivity data confirmed the model's prediction that, in the absence of significant electroosmosis, the reciprocal of flux is linearly related to either donor or receptor solution conductivity. Significant interaction with the pore walls, as described by the model, accounted for the reported pH dependence of the iontophoretic transport for a range of ionizable solutes. Conclusions. The ionic mobility-pore iontophoretic model developed enables a range of determinants of iontophoresis to be described in a single unifying equation which recognises a range of determinants of iontophoretic flux.
Resumo:
Background and objectives: The greatest increase in bone mineral content occurs during adolescence. The amount of bone accrued may significantly affect bone mineral status in later life. We carried out a longitudinal investigation of the magnitude and timing of peak bone mineral content velocity (PBMCV) in relation to peak height velocity (PHV) and the age at menarche in a group of adolescent girls over a 6-year period. Methods: The 53 girls in this study are a subset of the 115 girls (initially 8 to 16 years) in a g-year longitudinal study of bone mineral accretion. The ages at PBMCV and PHV were determined by using a cubic spline curve fitting procedure. Determinations were based on height (n = 12) and bone (n = 6) measurements over 6 years. Results: The timing of PBMCV and menarche were coincident, preceded approximately 1 year earlier by PHV. Correlation showed a negative relationship between age at menarche and both peak bone mineral accrual (r = -0.42, P
Resumo:
There are, at least, two major questions concerning the molecular development of the olfactory nerve pathway. First, what are the molecular cues responsible for guiding axons from the nasal cavity to the olfactory bulb? Second, what is the molecular basis of axon targeting to specific glomeruli once axons reach the olfactory bulb? Studies in the primary olfactory pathway have focused on the role of the extracellular matrix and ensheathing cells in establishing an initial substrate for growth of pioneer axons between the periphery and brain. The primary axons also express a multitude of cell adhesion molecules that regulate fasciculation of axons and hence may play a role in fascicle formation in the olfactory nerve. Although the olfactory neuroepithelium principally consists of a morphologically homogeneous class of primary olfactory neurons, there are numerous subpopulations of olfactory neurons expressing chemically distinct phenotypes. In particular, numerous subpopulations have been characterized by expression of unique carbohydrate residues and olfactory receptor proteins. Some of these molecules have recently been implicated in axon guidance and targeting to specific glomeruli.
Resumo:
Composite adsorbents of carbon and alumina intercalated montmorillonite were prepared and characterized by adsorption of N-2 and O-2 at various temperatures. The effects of pyrolysis, temperature, heating rate, subsequent degassing, and doping of cations and anions were investigated. The adsorption capacities of the composite adsorbents developed at higher temperatures (0 and -79 degrees C) are found to be larger than those of normal alumina pillared clays. The experimental results showed that the framework of these adsorbents is made of alumina particles and clay sheets while the pyrolyzed carbon distributes in the space of interlayers and interpillars. The pores between the carbon particles, clay sheets, and alumina pillars are very narrow with very strong adsorption forces, leading to enhanced adsorption capacities at 0 and -79 degrees C. The composite adsorbents exhibit features similar to those of carbonaceous adsorbents. Their pore structures, adsorption capacities, and selectivities to oxygen can be tailored by a controlled degassing procedure. Meanwhile, ions can be doped into the adsorbents to modify their adsorption properties, as usually observed for oxide adsorbents like zeolite and pillared clays. Such flexibility in pore structure tailoring is a potential advantage of the composite adsorbents developed for their adsorption and separation applications. (C) 1999 Academic Press.
Resumo:
In this paper, we develop a simple four parameter population balance model of in vivo neutrophil formation following bone marrow rescue therapy. The model is used to predict the number and type of neutrophil progenitors required to abrogate the period of severe neutropenia that normally follows a bone marrow transplant. The estimated total number of 5 billion neutrophil progenitors is consistent with the value extrapolated from a human trial. The model provides a basis for designing ex vivo expansion protocols.
Resumo:
This study describes a coding system developed to operationalize the sociolinguistic strategies proposed by communication accommodation theory (CAT) in an academic context. Fifty interactions between two students (of Australian or Chinese ethnic background) or a student and faculty member were videotaped. A turn- and episode-based coding system was developed, focusing on verbal and nonverbal behavior. The development of this system is described in detail, before results are presented. Results indicated that status was the main influence on choice of strategies, particularly the extent and type of discourse management and interpersonal control. Participants' sew and ethnicity also played a role: Male participants made more use of interpretability (largely questions), whereas female participants used discourse management to develop a shared perspective. The results make clear that there is no automatic correspondence between behaviors and the strategies they constitute, and they point to the appropriateness of conceptualizing behavior and strategies separately in CAT.
Resumo:
Back,ground To examine the role of long-term swimming exercise on regional and total body bone mineral density (BMD) in men. Methods. Experimental design: Cross-sectional. Setting: Musculoskeletal research laboratory at a medical center, Participants:We compared elite collegiate swimmers (n=11) to age-, weight-, and height-matched non-athletic controls (n=11), Measures: BMD (g/cm(2)) of the lumbar spine L2-4, proximal femur (femoral neck, trochanter, Ward's triangle), total body and various subregions of the total body, as well as regional and total body fat and bone mineral-free lean mass (LM) was assessed by dual-energy X-ray absorptiometry (DXA, Hologic QDR 1000/W). Results. Swimmers, who commenced training at 10.7+/-3.7 yrs (mean+/-SD) and trained for 24.7+/-4.2 hrs per week, had a greater amount of LM (p<0.05), lower fat mass (p<0.001) and percent body fat (9.5 vs 16.2 %, p<0.001) than controls. There was no significant difference between groups for regional or total body BRID, In stepwise multiple regression analysis, body weight was a consistent independent predictor of regional and total body BMD, Conclusions. These results suggest that long-term swimming is not an osteogenic mode of training in college-aged males. This supports our previous findings in young female swimmers who displayed no bone mass benefits despite long-standing athletic training.
Resumo:
S100A8 (also known as CP10 or MRP8) was the first member of the S100 family of calcium-binding proteins shown to be chemotactic for myeloid cells. The gene is expressed together with its dimerization partner S100A9 during myelopoiesis in the fetal liver and in adult bone marrow as well as in mature granulocytes. In this paper we show that S100A8 mRNA is expressed without S100A9 mRNA between 6.5 and 8.5 days postcoitum within fetal cells infiltrating the deciduum in the vicinity of the ectoplacental cone. Targeted disruption of the S100A8 gene caused rapid and synchronous embryo resorption by day 9.5 of development in 100% of homozygous null embryos. Until this point there was no evidence of developmental delay in S100A8(-/-) embryos and decidualization was normal. The results of PCR genotyping around 7.5-8.5 days postcoitum suggest that the null embryos are infiltrated with maternal cells before overt signs of resorption. This work is the first evidence for nonredundant function of a member of the S100 gene family and implies a role in prevention of maternal rejection of the implanting embryo. The S100A8 null provides a new model for studying fetal-maternal interactions during implantation.
Late Quaternary cycles of mangrove development and decline on the north Australian continental shelf
Resumo:
Mangrove communities in the Australian tropics presently occur as narrow belts of vegetation in estuaries and on sheltered, muddy coasts. Palynological data from continental shelf and deep-sea cores indicate a long-term cyclical component of mangrove development and decline at a regional scale, which can be linked to specific phases of late Quaternary sealevel change. Extensive mangrove development, relative to today, occurs during periods of marine transgression, whereas very diminished mangrove occurs during marine regressions and during rarer periods of relative sea-level stability. Episodes of flourishing mangrove cannot be linked to phases of humid climate, as has been suggested in studies elsewhere. Rather, the cycle of expansion and decline of mangrove communities on a grand scale is explained in terms of contrasting physiographic settings characteristic of continental-shelf coasts during transgressive and regressive phases, in particular by the existence, or lack, of well-developed tidal estuaries. Copyright (C) 1999 John Wiley & Sons, Ltd.