960 resultados para Biophysical requalification
Resumo:
Utilizing remote sensing methods to assess landscape-scale ecological change are rapidly becoming a dominant force in the natural sciences. Powerful and robust non-parametric statistical methods are also actively being developed to compliment the unique characteristics of remotely sensed data. The focus of this research is to utilize these powerful, robust remote sensing and statistical approaches to shed light on woody plant encroachment into native grasslands--a troubling ecological phenomenon occurring throughout the world. Specifically, this research investigates western juniper encroachment within the sage-steppe ecosystem of the western USA. Western juniper trees are native to the intermountain west and are ecologically important by means of providing structural diversity and habitat for many species. However, after nearly 150 years of post-European settlement changes to this threatened ecosystem, natural ecological processes such as fire regimes no longer limit the range of western juniper to rocky refugia and other areas protected from short fire return intervals that are historically common to the region. Consequently, sage-steppe communities with high juniper densities exhibit negative impacts, such as reduced structural diversity, degraded wildlife habitat and ultimately the loss of biodiversity. Much of today's sage-steppe ecosystem is transitioning to juniper woodlands. Additionally, the majority of western juniper woodlands have not reached their full potential in both range and density. The first section of this research investigates the biophysical drivers responsible for juniper expansion patterns observed in the sage-steppe ecosystem. The second section is a comprehensive accuracy assessment of classification methods used to identify juniper tree cover from multispectral 1 m spatial resolution aerial imagery.
Resumo:
Oxidized low-density lipoprotein (oxLDL)-induced apoptosis of vascular cells may participate to plaque instability and rupture. Caveolin-1 has emerged as an important regulator of several signal transduction pathways and processes that play a role in atherosclerosis. In this study we examined the potential role of caveolin-1 in the regulation of oxLDL-induced Ca(2+) signaling and apoptosis in vascular smooth muscle cells (VSMC). Cells expressing caveolin-1 were more susceptible to oxLDL-induced apoptosis, and this was correlated with enhanced Ca(2+) entry and pro-apoptotic events. Moreover, caveolin-1 silencing by small interfering RNA decreased the level of apoptotic cells after oxLDL treatment. These findings provide new insights about the potential role of caveolin-1 in the regulation of oxLDL-induced apoptosis in vascular cells and its contribution to the instability of the plaque.
Resumo:
To determine the immediate effect of thiazolidinediones on human skeletal muscle, differentiated human myotubes were acutely (1 day) and myoblasts chronically (during the differentiation process) treated with troglitazone (TGZ). Chronic TGZ treatment resulted in loss of the typical multinucleated phenotype. The increase of muscle markers typically observed during differentiation was suppressed, while adipocyte markers increased markedly. Chronic TGZ treatment increased insulin-stimulated phosphatidylinositol (PI) 3-kinase activity and membranous protein kinase B/Akt (PKB/Akt) Ser-473 phosphorylation more than 4-fold. Phosphorylation of p42/44 mitogen-activated protein kinase (42/44 MAPK/ERK) was unaltered. Basal glucose uptake as well as both basal and insulin-stimulated glycogen synthesis increased approximately 1.6- and approximately 2.5-fold after chronic TGZ treatment, respectively. A 2-fold stimulation of PI 3-kinase but no other significant TGZ effect was found after acute TGZ treatment. In conclusion, chronic TGZ treatment inhibited myogenic differentiation of that human muscle while inducing adipocyte-specific gene expression. The effects of chronic TGZ treatment on basal glucose transport may in part be secondary to this transdifferentiation. The enhancing effect on PI 3-kinase and PKB/Akt involved in both differentiation and glycogen synthesis appears to be pivotal in the cellular action of TGZ.
Resumo:
Rho family proteins are constitutively activated in the highly invasive human fibrosarcoma HT1080 cells. We now investigated the specific roles of Rac1 and Rac2 in regulating morphology, F-actin organization, adhesion, migration, and chemotaxis of HT1080 cells. Downregulation of Rac1 using specific siRNA probes resulted in cell rounding, markedly decreased spreading, adhesion, and chemotaxis of HT1080 cells. 2D migration on laminin-coated surfaces in contrast was not markedly affected. Selective Rac2 depletion did not affect cell morphology, cell adhesion, and 2D migration, but significantly reduced chemotaxis. Downregulation of both Rac1 and Rac2 resulted in an even more marked reduction, but not complete abolishment, of chemotaxis indicating distinct as well as overlapping roles of both proteins in chemotaxis. Rac1 thus is selectively required for HT1080 cell spreading and adhesion whereas Rac1 and Rac2 are both required for efficient chemotaxis.
Resumo:
Cerebral ischemia is accompanied by fulminant cellular and humoral inflammatory changes in the brain which contribute to lesion development after stroke. A tight interplay between the brain and the peripheral immune system leads to a biphasic immune response to stroke consisting of an early activation of peripheral immune cells with massive production of proinflammatory cytokines followed by a systemic immunosuppression within days of cerebral ischemia that is characterized by massive immune cell loss in spleen and thymus. Recent work has documented the importance of T lymphocytes in the early exacerbation of ischemic injury. The lipid signaling mediator sphingosine 1-phosphate-derived stable analog FTY720 (fingolimod) acts as an immunosuppressant and induces lymphopenia by preventing the egress of lymphocytes, especially T cells, from lymph nodes. We found that treatment with FTY720 (1mg/kg) reduced lesion size and improved neurological function after experimental stroke in mice, decreased the numbers of infiltrating neutrophils, activated microglia/macrophages in the ischemic lesion and reduced immunohistochemical features of apoptotic cell death in the lesion.
Resumo:
OBJECTIVE: Understanding of articular cartilage physiology, remodelling mechanisms, and evaluation of tissue engineering repair methods requires reference information regarding normal structural organization. Our goals were to examine the variation of cartilage cell and matrix morphology in different topographical areas of the adult human knee joint. METHODS: Osteochondral explants were acquired from seven distinct anatomical locations of the knee joints of deceased persons aged 20-40 years and prepared for analysis of cell, matrix and tissue morphology using confocal microscopy and unbiased stereological methods. Differences between locations were identified by statistical analysis. RESULTS: Medial femoral condyle cartilage had relatively high cell surface area per unit tissue volume in the superficial zone. In the transitional zone, meniscus-covered lateral tibia cartilage showed elevated chondrocyte densities compared to the rest of the knee while lateral femoral condyle cartilage exhibited particularly large chondrocytes. Statistical analyses indicated highly uniform morphology throughout the radial zone (lower 80% of cartilage thickness) in the knee, and strong similarities in cell and matrix morphologies among cartilage from the femoral condyles and also in the mediocentral tibial plateau. Throughout the adult human knee, the mean matrix volume per chondron was remarkably constant at approximately 224,000 microm(3), corresponding to approximately 4.6 x 10(6) chondrons per cm(3). CONCLUSIONS: The uniformity of matrix volume per chondron throughout the adult human knee suggests that cell-scale biophysical and metabolic constraints may place limitations on cartilage thickness, mechanical properties, and remodelling mechanisms. Data may also aid the evaluation of cartilage tissue engineering treatments in a site-specific manner. Results indicate that joint locations which perform similar biomechanical functions have similar cell and matrix morphologies; findings may therefore also provide clues to understanding conditions under which focal lesions leading to osteoarthritis may occur.
Resumo:
Cardiopulmonary bypass (CPB) may induce serious side effects, potentially leading to myocardial failure. The Na(+)-K(+)-ATPase is a key component for myocardial function. Due to its developmental regulation, results from adult studies cannot be adopted to the situation in childhood. Right atrial myocardium from patients with left-to-right shunts at atrial level (VO, n=8) and those without (NO, n=8) was excised during heart surgery before and after CPB. Na(+)-K(+)-ATPase isoforms ATP1A1 (p=0.008) and ATP1A3 (p=0.038) decreased during CPB, which decrease was restricted to the VO group. This study highlights the importance of the underlying heart defect for susceptibility to the effects of CPB, showing a reduced Na(+)-K(+)-ATPase mRNA expression only in patients with left-to-right shunts on the atrial level. This seemed to be an early molecular event, as apart from one, none of the patients showed heart failure before or after surgery.
Resumo:
Differential expression of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) and phospholamban (PLB) has been shown in heart failure and atrial arrhythmias. We investigated the influence of volume overload and age on their expression in pediatric atrial myocardium. Right atrial specimens from 18 children with volume overloaded right atrium (VO) and 12 patients without overload were studied. Each group was further divided into patients less than and older than 12 months of age. Only in the younger patients SERCA2a was significantly reduced in the VO group. In younger patients PLB mRNA level tended to be lower in VO. The PLB:SERCA protein ratio was significantly reduced in the VO group. Age itself did not influence the SERCA2a and PLB expression, if the hemodynamic overload was not taken into account. This study is the first to show a combined influence of volume overload and age on atrial SERCA2a expression.
Resumo:
The concept of multispecific antibodies is of high therapeutic interest but has failed to produce pharmaceutical products due to the poor biophysical properties of such molecules. Here, we propose an alternative and simple way to generate bispecific binding molecules using designed ankyrin repeat proteins (DARPins). For this purpose, monovalent DARPins with different epitope specificities were selected against the alpha chain of the high-affinity receptor for human immunoglobulin E (IgE) (FcepsilonRIalpha). Two of the isolated binders interfering with IgE binding to the receptor were joined to each other or to themselves via a flexible protein linker. The resulting bivalent and bispecific DARPins were tested for their ability to prevent allergen-induced cell degranulation using rat basophilic leukemia cells stably transfected with human FcepsilonRIalpha. The bispecific DARPin construct was the most potent one, efficiently blocking the IgE-FcepsilonRI interaction and preventing the release of proinflammatory mediators. Noteworthy, the multivalent and multispecific DARPin construct did not show any alteration of the beneficial biophysical properties of the monovalent parental DARPins. Hence, bispecific DARPins may be used to generate receptor antagonists simultaneously targeting different epitopes on the same molecule. Moreover, they easily overcome the limiting immunoglobulin binding paradigm (one binding molecule=one epitope) and thereby represent an alternative to monoclonal antibodies in cases where the immunoglobulin scaffold is unsuitable.
Resumo:
Soil conservation technologies that fit well to local scale and are acceptable to land users are increasingly needed. To achieve this at small-holder farm level, there is a need for an understanding of specific erosion processes and indicators, the land users’ knowledge and their willingness, ability and possibilities to respond to the respective problems to decide on control options. This study was carried out to assess local erosion and performance of earlier introduced conservation terraces from both technological and land users’ points of view. The study was conducted during July to August 2008 at Angereb watershed on 58 farm plots from three selected case-study catchments. Participatory erosion assessment and evaluation were implemented along with direct field measurement procedures. Our focus was to involve the land users in the action research to explore with them the effectiveness of existing conservation measures against the erosion hazard. Terrace characteristics measured and evaluated against the terrace implementation guideline of Hurni (1986). The long-term consequences of seasonal erosion indicators had often not been known and noticed by farmers. The cause and effect relationships of the erosion indicators and conservation measures have shown the limitations and gaps to be addressed towards sustainable erosion control strategies. Less effective erosion control has been observed and participants have believed the gaps are to be the result of lack of landusers’ genuine participation. The results of both local erosion observation and assessment of conservation efficacy using different aspects show the need to promote approaches for erosion evaluation and planning of interventions by the farmers themselves. This paper describes the importance of human factor involving in the empirical erosion assessment methods towards sustainable soil conservation.