993 resultados para Biology, General|Biology, Genetics|Chemistry, Biochemistry
Resumo:
A hybrid zone between the grasshoppers Chorthippus brunneus and C. jacobsi (Orthoptera: Acrididae) in northern Spain has been analyzed for variation in morphology and ecology. These species are readily distinguished by the number of stridulatory pegs on the hind femur. Both sexes are fully winged and inhabit disturbed habitats throughout the study area. We develop a maximum-likelihood approach to fitting a two-dimensional cline to geographical variation in quantitative traits and for estimating associations of population mean with local habitat. This method reveals a cline in peg number approximately 30 km south of the Picos de Europa Mountains that shows substantial deviations in population mean compared with the expectations of simple tension zone models. The inclusion of variation in local vegetation in the model explains a significant proportion of the residual variation in peg number, indicating that habitat-genotype associations contribute to the observed spatial pattern. However, this association is weak, and a number of populations continue to show strong deviations in mean even after habitat is included in the final model. These outliers may be the result of long-distance colonization of sites distant from the cline center or may be due to a patchy pattern of initial contact during postglacial expansion. As well as contrasting with the smooth hybrid zones described for Chorthippus parallelus, this situation also contrasts with the mosaic hybrid zones observed in Gryllus crickets and in parts of the hybrid zone between Bombina toad species, where habitat-genotype associations account for substantial amounts of among-site variation.
Resumo:
Molecular evolution has been considered to be essentially a stochastic process, little influenced by the pace of phenotypic change. This assumption was challenged by a study that demonstrated an association between rates of morphological and molecular change estimated for total-evidence phylogenies, a finding that led some researchers to challenge molecular date estimates of major evolutionary radiations. Here we show that Omland's (1997) result is probably due to methodological bias, particularly phylogenetic nonindependence, rather than being indicative of an underlying evolutionary phenomenon. We apply three new methods specifically designed to overcome phylogenetic bias to 13 published phylogenetic datasets for vertebrate taxa, each of which includes both morphological characters and DNA sequence data. We find no evidence of an association between rates of molecular and morphological rates of change.
Resumo:
We studied the effect of arsenic exposure on the haem biosynthetic pathway in the rat and humans. Significant increases in protoporphyrin IX, coproporphyrin III, coproporphyrin I were observed in the blood, liver and kidney, and in the urine of rats after a single dose of arsenic. The level of increase was dependent on the arsenic species present. Most of porphyrin concentrations in the tissues increased within 24 hr and urinary excretion elevated within 48 hr. In the human study, we collected urine samples from 113 people who live in Xing Ren of Guizhou Province, a coal-borne arsenicosis endemic area in southwest of PR China and from 30 people who live in Xing Yi (about 80 km southwest of Xing Ren) where arsenicosis is not prevalent. We analyzed the urinary porphyrins using HPLC. Results indicate that all urinary porphyrins were higher in the arsenic exposed group than those in the control group. Women, children and older age people spend much of their time indoors, they had greater increases of urinary arsenic and porphyrins. They were the higher risk groups among the study subjects. A positive correlation between the urinary arsenic levels and porphyrin concentrations demonstrated the effect of arsenic on haem biosynthesis. Significant alteration in the porphyrin excretion profiles of the younger age (
Resumo:
SOX transcription factors perform a remarkable variety of important roles in vertebrate development, either activating or repressing specific target genes through interaction with different partner proteins. Surprisingly, these interactions are often mediated by the conserved, DNA-binding HMG domain, raising questions as to how each factor's specificity is generated. We propose a model whereby non-HMG domains may influence partner protein selection and/or binding stability.
Resumo:
Fish occupy a range of hydrological habitats that exert different demands on locomotor performance. We examined replicate natural populations of the rainbow fishes Melanotaenia eachamensis and M. duboulayi to determine if colonization of low-velocity (lake) habitats by fish from high-velocity (stream) habitats resulted in adaptation of locomotor morphology and performance. Relative to stream conspecifics, lake fish had more posteriorly positioned first dorsal and pelvic fins, and shorter second dorsal fin bases. Habitat dimorphism observed between wild-caught fish was determined to be heritable as it was retained in M. eachamensis offspring raised in a common garden. Repeated evolution of the same heritable phenotype in independently derived populations indicated body shape divergence was a consequence of natural selection. Morphological divergence between hydrological habitats did not support a priori expectations of deeper bodies and caudal peduncles in lake fish. However, observed divergence in fin positioning was consistent with a family-wide association between habitat and morphology, and with empirical studies on other fish species. As predicted, decreased demand for sustained swimming in takes resulted in a reduction in caudal red muscle area of lake fish relative to their stream counterparts. Melanotaenia duboulayi lake fish also had slower sustained swimming speeds (U-crit) than stream conspecifics. In M. eachamensis, habitat affected U-crit of males and females differently. Specifically, females exhibited the pattern observed in M. duboulayi (lake fish had faster U-crit than stream fish), but the opposite association was observed in males (stream males had slower Ucrit than lake males). Stream M. eachamensis also exhibited a reversed pattern of sexual dimorphism in U-crit (males slower than females) relative to all other groups (males faster than females). We suggest that M. eachamensis males from streams responded to factors other than water velocity. Although replication of muscle and U,,it phenotypes across same habitat populations within and/or among species was suggestive of adaptation, the common garden experiment did not confirm a genetic basis to these associations. Kinematic studies should consider the effect of the position and base length of dorsal fins.
Resumo:
Latitudinal clines provide natural systems that may allow the effect of natural selection on the genetic variance to be determined. Ten clinal populations of Drosophila serrata collected from the eastern coast of Australia were used to examine clinal patterns in the trait mean and genetic variance of the life-history trait egg-to-adult development time. Development time significantly lengthened from tropical areas to temperate areas. The additive genetic variance for development time in each population was not associated with latitude but was associated with the population mean development time. Additive genetic variance tended to be larger in populations with more extreme development times and appeared to be consistent with allele frequency change. In contrast, the nonadditive genetic variance was not associated with the population mean but was associated with latitude. Levels of nonadditive genetic variance were greatest in the region of the cline where the gradient in the change in mean was greatest, consistent with Barton's (1999) conjecture that the generation of linkage disequilibrium may become an important component of the genetic variance in systems with a spatially varying optimum.
Resumo:
The sexual ornamentation used by male guppies to attract females comprises many components, each of which varies considerably among males. Although natural and sexual selection have been shown to contribute to divergence among populations in male sexual ornaments, the role of sexual selection in maintaining polymorphism within populations is less clear. We used both parametric quadratic regression and nonparametric projection pursuit regression techniques to reveal the major axes of non-linear sexual selection on male ornaments. We visualized the fitness surfaces defined by these axes using thin-plate splines to allow a direct comparison of the two methodologies. Identification of the major axes of selection and their visualization was critical in determining the form and strength of nonlinear selection. Both types of analysis revealed fitness surfaces comprising three peaks, suggesting that there is more than one way to make an attractive guppy. Disruptive selection may be an important process underlying the presence of multiple sexual ornaments and may contribute to the maintenance of the high levels of polymorphism in male sexual ornaments found in guppy populations.
Resumo:
What causes species richness to vary among different groups of organisms? Two hypotheses are that large geographical ranges and fast life history either reduce extinction rates or raise speciation rates, elevating a clade's rate of diversification. Here we present a comparative analysis of these hypotheses using data on the phylogenetic relationships, geographical ranges and life history of the terrestrial mammal fauna of Australia. By comparing species richness patterns to null models, we show that species are distributed nonrandomly among genera. Using sister-clade comparisons to control for clade age, we then find that faster diversification is significantly associated with larger geographical ranges and larger litters, but there is no evidence for an effect of body size or age at first breeding on diversification rates. We believe the most likely explanation for these patterns is that larger litters and geographical ranges increase diversification rates because they buffer species from extinction. We also discuss the possibility that positive effects of litter size and range size on diversification rates result from elevated speciation rates.
Resumo:
Shoot branching is inhibited by auxin transported down the stem from the shoot apex. Auxin does not accumulate in inhibited buds and so must act indirectly. We show that mutations in the MAX4 gene of Arabidopsis result in increased and auxin-resistant bud growth. Increased branching in max4 shoots is restored to wild type by grafting to wild-type rootstocks, suggesting that MAX4 is required to produce a mobile branch-inhibiting signal, acting downstream of auxin. A similar role has been proposed for the pea gene, RMS1. Accordingly, MAX4 and RMS1 were found to encode orthologous, auxin-inducible members of the polyene dioxygenase family.
Resumo:
Why does species richness vary so greatly across lineages? Traditionally, variation in species richness has been attributed to deterministic processes, although it is equally plausible that it may result from purely stochastic processes. We show that, based on the best available phylogenetic hypothesis, the pattern of cladogenesis among agamid lizards is not consistent with a random model, with some lineages having more species, and others fewer species, than expected by chance. We then use phylogenetic comparative methods to test six types of deterministic explanation for variation in species richness: body size, life history, sexual selection, ecological generalism, range size and latitude. Of eight variables we tested, only sexual size dimorphism and sexual dichromatism predicted species richness. Increases in species richness are associated with increases in sexual dichromatism but reductions in sexual size dimorphism. Consistent with recent comparative studies, we find no evidence that species richness is associated with small body size or high fecundity. Equally, we find no evidence that species richness covaries with ecological generalism, latitude or range size.
Resumo:
Numerous hypotheses have been proposed to explain latitudinal gradients in species richness, but all are subject to ongoing debate. Here we examine Rohde's (1978, 1992) hypothesis, which proposes that climatic conditions at low latitudes lead to elevated rates of speciation. This hypothesis predicts that rates of molecular evolution should increase towards lower latitudes, but this prediction has never been tested. We discuss potential links between rates of molecular evolution and latitudinal diversity gradients, and present the first test of latitudinal variation in rates of molecular evolution. Using 45 phylogenetically independent, latitudinally separated pairs of bird species and higher taxa, we compare rates of evolution of two mitochondrial genes and DNA-DNA hybridization distances. We find no support for an effect of latitude on rate of molecular evolution. This result casts doubt on the generality of a key component of Rohde's hypothesis linking climate and speciation.
Resumo:
We report the spatial expression patterns of five anterior Hox genes during larval development of the gastropod mollusc Haliotis asinina, an unsegmented spiralian lophotrochozoan. Molecular alignments and phylogenetic analysis indicate that these genes are homologues of Drosophila HOM-C genes labial, proboscipedia, zen, Deformed, and Sex combs reduced, the abalone genes are named Has-Hox1, -Hox2, -Hox3, -Hox4, and -Hox5. Has-Hox transcripts are first detected in the free-swimming trochophore larval stage- and restricted to the posttrochal ectoderm. Has-Hox2, -Hox3, and -Hox4 are expressed in bilaterally symmetrical and overlapping patterns in presumptive neuroectodermal cells on the ventral side of the trochophore. Has-Hox1 expression is restricted to a ring of cells on the dorsoposterior surface, corresponding to the outer mantle edge where new larval shell is being synthesized. There appears to be little change in the expression domains of these Has-Hox genes in pre- and posttorsional veliger larvae, with expression maintained in ectodermal and neuroectodermal tissues. Has-Hox2, -Hox3, -Hox4, and-Hox5 appear to be expressed in a colinear manner in the ganglia and connectives in the twisted nervous system. This pattern is not evident in older larvae. Has-Hox1 and-Hox4 are expressed in the margin of the mantle in the posttorsional veliger, suggesting that Hox genes play a role in gastropod shell formation.
Resumo:
Although the concept of bet-hedging has been useful in microevolutionary studies for over 25 years, a recent paper by Andrew Simons suggests that it is also applicable to macroevolutionary events, with the same fundamental process of selection working at all temporal scales.
Resumo:
Using a subtractive hybridisation approach, we enriched for genes likely to play a role in embryonic development of the mammalian face and other structures. This was achieved by subtracting cDNA derived from adult mouse liver from that derived from 10.5 dpc mouse embryonic branchial arches 1 and 2. Random sequencing of clones from the resultant library revealed that a high percentage correspond to genes with a previously established role in embryonic development and disease, while 15% represent novel or uncharacterised genes. Whole mount in situ hybridisation analysis of novel genes revealed that approximately 50% have restricted expression during embryonic development. In addition to expression in branchial arches, these genes showed a range of expression domains commonly including neural tube and somites. Notably, all genes analysed were found to be expressed not only in the branchial arches but also in the developing limb buds, providing support for the hypothesis that development of the limbs and face is likely to involve analogous molecular processes. (C) 2003 Wiley-Liss, Inc.