988 resultados para Biological interactions
Resumo:
In this paper we refer to the gene-to-phenotype modeling challenge as the GP problem. Integrating information across levels of organization within a genotype-environment system is a major challenge in computational biology. However, resolving the GP problem is a fundamental requirement if we are to understand and predict phenotypes given knowledge of the genome and model dynamic properties of biological systems. Organisms are consequences of this integration, and it is a major property of biological systems that underlies the responses we observe. We discuss the E(NK) model as a framework for investigation of the GP problem and the prediction of system properties at different levels of organization. We apply this quantitative framework to an investigation of the processes involved in genetic improvement of plants for agriculture. In our analysis, N genes determine the genetic variation for a set of traits that are responsible for plant adaptation to E environment-types within a target population of environments. The N genes can interact in epistatic NK gene-networks through the way that they influence plant growth and development processes within a dynamic crop growth model. We use a sorghum crop growth model, available within the APSIM agricultural production systems simulation model, to integrate the gene-environment interactions that occur during growth and development and to predict genotype-to-phenotype relationships for a given E(NK) model. Directional selection is then applied to the population of genotypes, based on their predicted phenotypes, to simulate the dynamic aspects of genetic improvement by a plant-breeding program. The outcomes of the simulated breeding are evaluated across cycles of selection in terms of the changes in allele frequencies for the N genes and the genotypic and phenotypic values of the populations of genotypes.
Resumo:
Cadherin cell adhesion molecules are major determinants of tissue patterning which function in cooperation with the actin cytoskeleton [1-4]. In the context of stable adhesion [1], cadherin/catenin complexes are often envisaged to passively scaffold onto cortical actin filaments. However, cadherins also form dynamic adhesive contacts during wound healing and morphogenesis [2]. Here actin polymerization has been proposed to drive cell surfaces together [5], although F-actin reorganization also occurs as cell contacts mature [6]. The interaction between cadherins and actin is therefore likely to depend on the functional state of adhesion. We sought to analyze the relationship between cadherin homophilic binding and cytoskeletal activity during early cadherin adhesive contacts. Dissecting the specific effect of cadherin ligation alone on actin regulation is difficult in native cell-cell contacts, due to the range of juxtacrine signals that can arise when two cell surfaces adhere [7]. We therefore activated homophilic ligation using a specific functional recombinant protein. We report the first evidence that E-cadherin associates with the Arp2/3 complex actin nucleator and demonstrate that cadherin binding can exert an active, instructive influence on cells to mark sites for actin assembly at the cell surface.
Resumo:
Classical cadherins mediate cell recognition and cohesion in many tissues of the body. It is increasingly apparent that dynamic cadherin contacts play key roles during morphogenesis and that a range of cell signals are activated as cells form contacts with one another. It has been difficult, however, to determine whether these signals represent direct downstream consequences of cadherin ligation or are juxtacrine signals that are activated when cadherin adhesion brings cell surfaces together but are not direct downstream targets of cadherin signaling. In this study, we used a functional cadherin ligand (hE/Fc) to directly test whether E-cadherin ligation regulates phosphatidylinositol 3-kinase (PI 3-kinase) and Rac signaling. We report that homophilic cadherin ligation recruits Rae to nascent adhesive contacts and specifically stimulates Rae signaling. Adhesion to hE/Fc also recruits PI 3-kinase to the cadherin complex, leading to the production of phosphatidylinositol 3,4,5-trisphosphate in nascent cadherin contacts. Rae activation involved an early phase, which was PI 3-kinase-independent, and a later amplification phase, which was inhibited by wortmannin. PI 3-kinase and Rae activity were necessary for productive adhesive contacts to form following initial homophilic ligation. We conclude that E-cadherin is a cellular receptor that is activated upon homophilic ligation to signal through PI 3-kinase and Rae. We propose that a key function of these cadherin-activated signals is to control adhesive contacts, probably via regulation of the actin cytoskeleton, which ultimately serves to mediate adhesive cell-cell recognition.
Resumo:
The vertebrate Slit gene family currently consists of three members;Slit1,Slit2 and Slit3. Each gene encodes a protein containing multiple epidermal growth factor and leucine rich repeat motifs, which are likely to have importance in cell-cell interactions. In this study, we sought to fully define and characterise the vertebrate Slit gene family. Using long distance PCR coupled with in silico mapping, we determined the genomic structure of all three Slit genes in mouse and man. Analysis of EST and genomic databases revealed no evidence of further Slit family members in either organism. All three Slit genes were encoded by 36 (Slit3) or 37 (Slit1 and Slit2) exons covering at least 143 kb or 183 kb of mouse or human genomic DNA respectively. Two additional potential leucine-rich repeat encoding exons were identified within intron 12 of Slit2. These could be inserted in frame, suggesting that alternate splicing may occur in Slit2 A search for STS sequences within human Slit3 anchored this gene to D5S2075 at the 5' end (exon 4) and SGC32449 within the 3' UTR, suggesting that Slit3 may cover greater than 693 kb. The genomic structure of all Slit genes demonstrated considerable modularity in the placement of exon-intron boundaries such that individual leucine-rich repeat motifs were encoded by individual 72 by exons. This further implies the potential generation of multiple Slit protein isoforms varying in their number of repeat units. cDNA library screening and EST database searching verified that such alternate splicing does occur.
Resumo:
SOX transcription factors perform a remarkable variety of important roles in vertebrate development, either activating or repressing specific target genes through interaction with different partner proteins. Surprisingly, these interactions are often mediated by the conserved, DNA-binding HMG domain, raising questions as to how each factor's specificity is generated. We propose a model whereby non-HMG domains may influence partner protein selection and/or binding stability.
Resumo:
The distributions of the Eph-class receptors EphA4 and EphB 1, and their ligands ephrin-A2, ephrin-B1, and ephrin-B2, were analysed by immunostaining in the mouse inner ear. Complementary patterns of EphA4 and its potential ligand ephrin-A2 were found, with ephrin-A2 in many of the structures lining the cochlear duct and within the cochlear nerve cells, and EphA4 in the deeper structures underlying the cochlear duct and in the cells lining the nerve pathway. EphB1 and its potential ligands ephrin-B1 and ephrin-B2 showed a segregated layered expression in the lateral wall of the cochlear duct (the external sulcus), which together with EphA4 expressed in the area, form a four-layered structure with an alternating pattern of receptors and ligands in the different layers. This arrangement gives the potential for different bidirectional Eph-mediated interactions between each of the layers. The results suggest that the Eph system in the cochlea may have a role in maintaining cell segregation during phases of cochlear development. (C) 2002 Wiley-Liss, Inc.
Resumo:
Background: There is ample evidence of important symptomatic efficacy of tumour necrosis factor alpha (TNFalpha) inhibition in ankylosing spondylitis (AS). Moreover, studies suggest that anti-TNF could be considered as the first disease controlling antirheumatic treatment (DC-ART) for AS. Objective: To determine precisely which patients with AS are most likely to benefit from anti-TNFalpha treatment because of the cost and possible long term side effects of such treatment. Methods: Assessment in Ankylosing Spondylitis (ASAS) members were asked to use a Delphi technique to name the characteristics of patients with AS for whom they would start DC-ART, in three different clinical presentations (isolated axial involvement, peripheral arthritis, enthesitis). Results: Among the 62 invited ASAS members, more than 50% actively participated in the four phases of definition according to the Delphi technique. For each of the three clinical presentations, a combination of five to six domains was proposed, with an evaluation instrument and a cut off point defining a minimum level of activity for each domain. Conclusion: This study provides a profile for a patient with AS for considering initiation of biological agents that reflects the opinion of the ASAS members, using a Delphi exercise. Further studies are required to assess their relevance and their consistency with clinical practice.
Resumo:
The Test of Mouse Proficiency (TOMP) was developed to assist occupational therapists and education professionals assess computer mouse competency skills in children from preschool to upper primary (elementary) school age. The preliminary reliability and validity of TOMP are reported in this paper. Methods used to examine the internal consistency, test-retest reliability, and criterion- and construct-related validity of the test are elaborated. In the continuing process of test refinement, these preliminary studies support to varying degrees the reliability and validity of TOMP. Recommendations for further validation of the assessment are discussed along with indications for potential clinical application.
Resumo:
Multiple HLA class I alleles can bind peptides with common sequence motifs due to structural similarities in the peptide binding cleft, and these groups of alleles have been classified into supertypes. Nine major HLA supertypes have been proposed, including an A24 supertype that includes A*2301, A*2402, and A*3001. Evidence for this A24 supertype is limited to HLA sequence homology and/or similarity in peptide binding motifs for the alleles. To investigate the immunological relevance of this proposed supertype, we have examined two viral epitopes (from EBV and CMV) initially defined as HLA-A*2301-binding peptides. The data clearly demonstrate that each peptide could be recognized by CTL clones in the context of A*2301 or A*2402; thus validating the inclusion of these three alleles within an A24 supertype. Furthermore, CTL responses to the EBV epitope were detectable in both A*2301(+) and A*2402(+) individuals who had been previously exposed to this virus. These data substantiate the biological relevance of the A24 supertype, and the identification of viral epitopes with the capacity to bind promiscuously across this supertype could aid efforts to develop CTL-based vaccines or immunotherapy. The degeneracy in HLA restriction displayed by some T cells in this study also suggests that the dogma of self-MHC restriction needs some refinement to accommodate foreign peptide recognition in the context of multiple supertype alleles.
Resumo:
The secretory and endocytic pathways of eukaryotic organelles consist of multiple compartments, each with a unique set of proteins and lipids. Specific transport mechanisms are required to direct molecules to defined locations and to ensure that the identity, and hence function, of individual compartments are maintained. The localisation of proteins to specific membranes is complex and involves multiple interactions. The recent dramatic advances in understanding the molecular mechanisms of membrane transport has been due to the application of a multi-disciplinary approach, intergrating membrane biology, genetics, imaging, protein and lipid biochemistry and structural biology. The aim of this review is to summarise the general principles of protein sorting in the secretory and endocytic pathways and to highlight the dynamic nature of these processes. The molecular mechanisms involved in this transport along the secretory and endocytic pathways are discussed along with the signals responsible for targeting proteins to different intracellular locations. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
This review summarizes the development of exclusion chromatography, also termed gel filtration, molecular-sieve chromatography and gel permeation chromatography, for the quantitative characterization of solutes and solute interactions. As well as affording a means of determining molecular mass and molecular mass distribution, the technique offers a convenient way of characterizing solute selfassociation and solute-ligand interactions in terms of reaction stoichiometry and equilibrium constant. The availability of molecular-sieve media with different selective porosities ensures that very little restriction is imposed on the size of solute amenable to study. Furthermore, access to a diverse array of assay procedures for monitoring the column eluate endows analytical exclusion chromatography with far greater flexibility than other techniques from the viewpoint of solute concentration range that can be examined. In addition to its widely recognized prowess as a means of solute separation and purification, exclusion chromatography thus also possesses considerable potential for investigating the functional roles of the purified solutes. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
In Australia people aged 65 years or older currently comprise 12.1% of the population. This has been estimated to rise to 24.2% by 2051. Until recently there has been relatively little research on alcohol and other drug use disorders among these individuals but, given the ageing population, this issue is likely to become of increasing importance and prominence. Epidemiological research shows a strong age-related decline in the prevalence of alcohol and other drug use disorders with age. Possible reasons for this include: age-related declines in the use and misuse of alcohol and other drugs; increased mortality among those with a lifetime history of alcohol and other drug use disorders; historical differences in exposure to and use of alcohol and other drugs. Despite the age-related decline in the prevalence of these disorders, they do still occur among those aged 65 years or older and, given historical changes in exposure to and use of illicit drugs, it likely that the prevalence of these disorders among older-aged individuals will rise. Specific issues faced by older-aged individuals with alcohol and other drug use problems are discussed. These include: interactions with prescribed medications, under-recognition and treatment of alcohol and drug problems, unintentional injury and social isolation. Finally, a brief discussion of treatment issues is provided.
Resumo:
Complete biological nutrient removal (BNR) in a single tank, sequencing batch reactor (SBR) process, is demonstrated here at full-scale on a typical domestic wastewater. The unique feature of the UniFed process is the introduction of the influent into the settled sludge blanket during the settling and decant periods of the SBR operation. This achieves suitable conditions for denitrification and anaerobic phosphate release which is critical to successful biological phosphorus removal, It also achieves a selector effect, which helps in generating a compact, well settling biomass in the reactor. The results of this demonstration show that it is possible to achieve well over 90% removal of GOD, nitrogen and phosphorus in such a process. Effluent quality achieved over a six-month operating period directly after commissioning was: 29 mg/l GOD, 0.5 mg/l NH4-N, 1.5 mg/l NOx-N and 1.5 mg/l PO4-P (50%-iles of daily samples). During an 8-day, intensive sampling period, the effluent BOD5 was
Resumo:
Acetohydroxyacid synthase (AHAS, EC 4.1.3.18) catalyses the first step in branched-chain amino acid biosynthesis and is the target for sulfonylurea and imidazolinone herbicides, which act as potent and specific inhibitors. Mutants of the enzyme have been identified that are resistant to particular herbicides. However, the selectivity of these mutants towards various sulfonylureas and imidazolinones has not been determined systematically. Now that the structure of the yeast enzyme is known, both in the absence and presence of a bound herbicide, a detailed understanding of the molecular interactions between the enzyme and its inhibitors becomes possible. Here we construct 10 active mutants of yeast AHAS, purify the enzymes and determine their sensitivity to six sulfonylureas and three imidazolinones. An additional three active mutants were constructed with a view to increasing imidazolinone sensitivity. These three variants were purified and tested for their sensitivity to the imidazolinones only. Substantial differences are observed in the sensitivity of the 13 mutants to the various inhibitors and these differences are interpreted in terms of the structure of the herbicide-binding site on the enzyme.
Resumo:
The newborns of mammals have a high folate demand, yet obtain adequate folate nutrition solely from their mothers' milk despite its low folate content. Milk folate is entirely bound by an excess of folate-binding protein (FBP), prompting speculation that FBP may affect the bioavailability of the limited folate supply. Previous research has shown that FBP-bound folic acid is more gradually absorbed, thereby reducing the peak plasma folate concentration and preventing loss into the urine. Natural folates are reduced derivatives of folic acid, with milk predominantly containing 5-methyltetrahydrofolate, yet little research has been carried out to determine the role of FBP in the bioavailability of reduced folates. We studied the effect of FBP on folate nutrition of rats in both single-dose and 4-wk feeding experiments. The effect of FBP was influenced by the presence of other milk components. FBP increased bioavailability of dietary folate when it was consumed with other whey proteins or with soluble casein. However, in the presence of acid-precipitated casein or a whey preparation enriched in lipids, bioavailability was decreased. These results highlight the difficulties of extrapolating from experimental results obtained using purified diets alone and of studying interactions among dietary components. They suggest that the addition of FBP-rich foods to folate-rich foods could enhance the bioavailability of natural folates, but that the outcome of such a combination would depend on interactions with other components of the diet.