908 resultados para Biological diversity conservation
Resumo:
1. The establishment of grassy strips at the margins of arable fields is an agri-environment scheme that aims to provide resources for native flora and fauna and thus increase farmland biodiversity. These margins can be managed to target certain groups, such as farmland birds and pollinators, but the impact of such management on the soil fauna has been poorly studied. This study assessed the effect of seed mix and management on the biodiversity, conservation and functional value of field margins for soil macrofauna. 2. Experimental margin plots were established in 2001 in a winter wheat field in Cambridgeshire, UK, using a factorial design of three seed mixes and three management practices [spring cut, herbicide application and soil disturbance (scarification)]. In spring and autumn 2005, soil cores taken from the margin plots and the crop were hand-sorted for soil macrofauna. The Lumbricidae, Isopoda, Chilopoda, Diplopoda, Carabidae and Staphylinidae were identified to species and classified according to feeding type. 3. Diversity in the field margins was generally higher than in the crop, with the Lumbricidae, Isopoda and Coleoptera having significantly more species and/or higher abundances in the margins. Within the margins, management had a significant effect on the soil macrofauna, with scarified plots containing lower abundances and fewer species of Isopods. The species composition of the scarified plots was similar to that of the crop. 4. Scarification also reduced soil- and litter-feeder abundances and predator species densities, although populations appeared to recover by the autumn, probably as a result of dispersal from neighbouring plots and boundary features. The implications of the responses of these feeding groups for ecosystem services are discussed. 5. Synthesis and applications. This study shows that the management of agri-environment schemes can significantly influence their value for soil macrofauna. In order to encourage the litter-dwelling invertebrates that tend to be missing from arable systems, agri-environment schemes should aim to minimize soil cultivation and develop a substantial surface litter layer. However, this may conflict with other aims of these schemes, such as enhancing floristic and pollinator diversity.
Resumo:
Techniques that increase the biodiversity value of species-poor grassland are required if conservation targets aimed at reversing the decline in species-rich grassland are to be met. This study investigated the diversification of swards dominated by Lolium perenne by testing the efficacies of two treatments applied to reduce competitive exclusion of species introduced as seed. The 'biological' treatment was the addition of the hemiparasitic plant species introduced as seed. The 'biological' treatment was the application of a selective graminicide, fluazifop-P-butyl (Fusilade 250EW). Changes in plant community composition were monitored for a period of 2 years. Values of plant species richness increased significantly between years regardless of treatment, but to a greater extent in plots sown with R. minor. The number of established sown species and their richness and tended to promote unsown species rather than those introduced as seed. Overall, the R. minor treatment was associated with the greatest impact on sward composition, facilitating establishment and development of the introduced species and promoting forb abundance. (c) 2007 Gessellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.
Resumo:
1. Determining the functional significance of species diversity in natural enemy assemblages is a key step towards prediction of the likely impact of biodiversity loss on natural pest control processes. While the biological control literature contains examples in which increased natural enemy diversity hinders pest control, other studies have highlighted mechanisms where pest suppression is promoted by increased enemy diversity. 2. This study aimed to test whether increased predator species diversity results in higher rates of predation on two key, but contrasting, insect pest species commonly found in the rice ecosystems of south-east Asia. 3. Glasshouse experiments were undertaken in which four life stages of a planthopper (Nilaparvata lugens) and a moth (Marasmia patnalis) were caged with single or three-species combinations of generalist predators. 4. Generally, predation rates of the three-species assemblages exceeded expectation when attacking M. patnalis, but not when attacking N. lugens. In addition, a positive effect of increased predator species richness on overall predation rate was found with M. patnalis but not with N. lugens. 5. The results are consistent with theoretical predictions that morphological and behavioural differentiation among prey life stages promotes functional complementarity among predator species. This indicates that emergent species diversity effects in natural enemy assemblages are context dependent; they depend not only on the characteristics of the predators species, but on the identity of the species on which they prey.
Resumo:
The endemic pink pigeon has recovered from less than 20 birds in the mid-1970s to 355 free-living individuals in 2003. A major concern for the species' recovery has been the potential genetic problem of inbreeding. Captive pink pigeons bred for reintroduction were managed to maximise founder representation and minimise inbreeding. In this paper, we quantify the effect of inbreeding on survival and reproductive parameters in captive and wild populations and quantify DNA sequence variation in the mitochondrial d-loop region for pink pigeon founders. Inbreeding affected egg fertility, squab, juvenile and adult survival, but effects were strongest in highly inbred birds (F≥0.25). Inbreeding depression was more apparent in free-living birds where even moderate levels of inbreeding affected survival, although highly inbred birds were equally compromised in both captive and wild populations. Mitochondrial DNA haplotypic diversity in pink pigeon founders is low, suggesting that background inbreeding is contributing to low fertility and depressed productivity in this species, as well as comparable survival of some groups of non-inbred and nominally inbred birds. Management of wild populations has boosted population growth and may be required long-term to offset the negative effects of inbreeding depression and enhance the species' survival.
Resumo:
Mitochondrial DNA (mtDNA) is one of the most Popular population genetic markers. Its relevance as an indicator Of Population size and history has recently been questioned by several large-scale studies in animals reporting evidence for recurrent adaptive evolution, at least in invertebrates. Here we focus on mammals, a more restricted taxonomic group for which the issue of mtDNA near neutrality is crucial. By analyzing the distribution of mtDNA diversity across species and relating 4 to allozyme diversity, life-history traits, and taxonomy, we show that (i) mtDNA in mammals (toes not reject the nearly neutral model; (ii) mtDNA diversity, however, is unrelated to any of the 14 life-history and ecological variables that we analyzed, including body mass, geographic range, and The World Conservation Union (IUCN) categorization; (iii) mtDNA diversity is highly variable between mammalian orders and families; (iv) this taxonomic effect is most likely explained by variations of mutation rate between lineages. These results are indicative of a strong stochasticity of effective population size in mammalian species. They Suggest that, even in the absence of selection, mtDNA genetic diversity is essentially unpredictable, knowing species biology, and probably uncorrelated to species abundance.
Resumo:
Over the last 50 years, Spanish Atlantic salmon (Salmo salar) populations have been in decline. In order to bolster these populations, rivers were stocked with fish of northern European origin during the period 1974-1996, probably also introducing the furunculosis-inducing pathogen, Aeromonas salmonicida. Here we assess the relative importance of processes influencing mitochondrial (mt)DNA variability in these populations from 1948 to 2002. Genetic material collected over this period from four rivers in northern Spain (Cantabria) was used to detect variability at the mtDNA ND1 gene. Before stocking, a single haplotype was found at high frequency (0.980). Following stocking, haplotype diversity (h) increased in all rivers (mean h before stocking was 0.041, and 0.245 afterwards). These increases were due principally to the dramatic increase in frequency of a previously very low frequency haplotype, reported at higher frequencies in northern European populations proximate to those used to stock Cantabrian rivers. Genetic structuring increased after stocking: among-river differentiation was low before stocking (1950s/1960s Phi(ST) = -0.00296-0.00284), increasing considerably at the height of stocking (1980s Phi(ST) = 0.18932) and decreasing post-stocking (1990s/2002 Phi(ST) = 0.04934-0.03852). Gene flow from stocked fish therefore seems to have had a substantial role in increasing mtDNA variability. Additionally, we found significant differentiation between individuals that had probably died from infectious disease and apparently healthy, angled fish, suggesting a possible role for pathogen-driven selection of mtDNA variation. Our results suggest that stocking with non-native fish may increase genetic diversity in the short term, but may not reverse population declines.
Resumo:
Conservation of crop wild relatives (CWRs) is a complex interdisciplinary process that is being addressed by various national and international initiatives, including two Global Environment Facility projects ('In situ Conservation of Crop Wild Relatives through Enhanced Information Management and Field Application' and 'Design, Testing and Evaluation of Best Practices for in situ Conservation of Economically Important Wild Species'), the European Community-funded project 'European Crop Wild Relative Diversity Assessment and Conservation Forum (PGR Forum)' and the European 'In situ and On Farm Network'. The key issues that have arisen are: (1) the definition of what constitutes a CWR, (2) the need for national and regional information systems and a global system, (3) development and application of priority-determining mechanisms, (4) the incorporation of the conservation of CWRs into existing national, regional and international PGR programmes, (5) assessment of the effectiveness of conservation actions, (6) awareness of the importance of CWRs in agricultural development at local, national and international levels both for the scientific and lay communities and (7) policy development and legal framework. The above issues are illustrated by work on the conservation of a group of legumes known as grasspea chicklings, vetchlings, and horticultural ornamental peas (Lathyrus spp.) in their European and Mediterranean centre of diversity. (c) 2007 Published by Elsevier B.V.
Resumo:
The Cape Floristic Region is exceptionally species-rich both for its area and latitude, and this diversity is highly unevenly distributed among genera. The modern flora is hypothesized to result largely from recent (post-Oligocene) speciation, and it has long been speculated that particular species-poor lineages pre-date this burst of speciation. Here, we employ molecular phylogenetic data in combination with fossil calibrations to estimate the minimum duration of Cape occupation by 14 unrelated putative relicts. Estimates vary widely between lineages (7-101 Myr ago), and when compared with the estimated timing of onset of the modern flora's radiation, it is clear that many, but possibly not all, of these lineages pre-date its establishment. Statistical comparisons of diversities with lineage age show that low species diversity of many of the putative relicts results from a lower rate of diversification than in dated Cape radiations. In other putative relicts, however, we cannot reject the possibility that they diversify at the same underlying rate as the radiations, but have been present in the Cape for insufficient time to accumulate higher diversity. Although the extremes in diversity of currently dated Cape lineages fall outside expectations under a underlying diversification rate, sampling of all Cape lineages would be required to reject this null hypothesis.
Low genetic diversity in a marine nature reserve: re-evaluating diversity criteria in reserve design
Resumo:
Little consideration has been given to the genetic composition of populations associated with marine reserves, as reserve designation is generally to protect specific species, communities or habitats. Nevertheless, it is important to conserve genetic diversity since it provides the raw material for the maintenance of species diversity over longer, evolutionary time-scales and may also confer the basis for adaptation to environmental change. Many current marine reserves are small in size and isolated to some degree (e.g. sea loughs and offshore islands). While such features enable easier management, they may have important implications for the genetic structure of protected populations, the ability of populations to recover from local catastrophes and the potential for marine reserves to act as sources of propagules for surrounding areas. Here, we present a case study demonstrating genetic differentiation, isolation, inbreeding and reduced genetic diversity in populations of the dogwhelk Nucella lapillus in Lough Hyne Marine Nature Reserve (an isolated sea lough in southern Ireland), compared with populations on the local adjacent open coast and populations in England, Wales and France. Our study demonstrates that this sea lough is isolated from open coast populations, and highlights that there may be long-term genetic consequences of selecting reserves on the basis of isolation and ease of protection.
Resumo:
Hot spots of endemism are regarded as important global sites for conservation as they are rich in threatened endemic species and currently experiencing extensive habitat loss. Targeting pre-emptive conservation action to sites that are currently relatively intact but which would be vulnerable to particular human activities if they occurred in the future is, however, also valuable but has received less attention. Here, we address this issue by using data on Endemic Bird Areas (EBAs). First, we identify the ecological factors that affect extinction risk in the face of particular human activities, and then use these insights to identify EBAs that should be priorities for pre-emptive conservation action. Threatened endemic species in EBAs are significantly more likely to be habitat specialists or relatively large-bodied than non-threatened species, when compared across avian families. Increasing habitat loss causes a significant increase in extinction risk among habitat specialists, but we found no evidence to suggest that the presence of alien species/human exploitation causes a significant increase in extinction risk among large-bodied species. This suggests that these particular human activities are contributing to high extinction risk among habitat specialists, but not among large-bodied species. Based on these analyses, we identify 39 EBAs containing 570 species (24% of the total in EBAs) that are not currently threatened with severe habitat loss, but would be ecologically vulnerable to future habitat loss should it occur. We show that these sites tend to be poorly represented in existing priority setting exercises involving hot spots, suggesting that vulnerability must be explicitly included within these exercises if such sites are to be adequately protected.
Resumo:
We investigated patterns of bryophyte species richness and community structure, and their relation to roof variables, on thatched roofs of the Holnicote Estate, South Somerset. Thirty-two bryophyte species were recorded from 28 sampled roofs, including the globally rare and endangered thatch moss, Leptodontium gemmascens. Multiple regression analyses revealed that thatch age has a highly significant positive effect on the number of species present, accounting for nearly half the observed variation in species richness after removal of outliers. Aspect has a slight and marginally significant effect on species diversity (accounting for an additional 6% of variation), with north-facing samples having slightly more species. Age also has a significant impact on total bryophyte cover after removal of outlying observations. TWINSPAN analysis of bryophyte cover data suggests the existence of at least five discrete communities. Simple Discriminant Analyses indicate that these communities occupy different ecological subspaces as defined by the measured roof variables, with pitch, aspect and thatch age emerging as especially significant attributes. Contingency Analysis indicates that some communities are disfavoured by water reed as compared to wheat straw. The findings are significant for understanding the structure of bryophyte communities, for evaluating the effect of bryophyte cover on thatch performance, and for conservation of thatch communities, especially those harbouring rare species.
Resumo:
While only about 1-200 species are used intensively in commercial floriculture (e.g. carnations, chrysanthemums, gerbera, narcissus, orchids, tulips, lilies, roses, pansies and violas, saintpaulias, etc.) and 4-500 as house plants, several thousand species of herbs, shrubs and trees are traded commercially by nurseries and garden centres as ornamentals or amenity species. Most of these have been introduced from the wild with little selection or breeding. In Europe alone, 12 000 species are found in cultivation in general garden collections (i.e. excluding specialist collections and botanic gardens). In addition, specialist collections (often very large) of many other species and/or cultivars of groups such as orchids, bromeliads, cacti and succulents, primulas, rhododendrons, conifers and cycads are maintained in several centres such as botanic gardens and specialist nurseries, as are 'national collections' of cultivated species and cultivars in some countries. Specialist growers, both professional and amateur, also maintain collections of plants for cultivation, including, increasingly, native plants. The trade in ornamental and amenity horticulture cannot be fully estimated but runs into many billions of dollars annually and there is considerable potential for further development and the introduction of many new species into the trade. Despite this, most of the collections are ad hoc and no co-ordinated efforts have been made to ensure that adequate germplasm samples of these species are maintained for conservation purposes and few of them are represented at all adequately in seed banks. Few countries have paid much attention to germplasm needs of ornamentals and the Ornamental Plant Germplasm Center in conjunction with the USDA National Plant Germplasm System at The Ohio State University is an exception. Generally there is a serious gap in national and international germplasm strategies, which have tended to focus primarily on food plants and some forage and industrial crops. Adequate arrangements need to be put in place to ensure the long- and medium-term conservation of representative samples of the genetic diversity of ornamental species. The problems of achieving this will be discussed. In addition, a policy for the conservation of old cultivars or 'heritage' varieties of ornamentals needs to be formulated. The considerable potential for introduction of new ornamental species needs to be assessed. Consideration needs to be given to setting up a co-ordinating structure with overall responsibility for the conservation of germplasm of ornamental and amenity plants.
Resumo:
In terms of their land area, many islands contain a disproportionate number of taxa for certain groups of organisms. Thus the IUCN/WWF Centres of Plant Diversity project, which identifies 234 first order sites that are globally most important from a botanical point of view, includes a considerable proportion of islands, and in Conservation International’s Hotspot programme, Madagascar and the Indian Ocean Islands, the Philippines, and the Caribbean are identified as three of the five “hottest of the hotspots”. Priority for conservation action is often assumed for islands because of the often dramatic losses already suffered and the serious level of threats to which plant or animal populations are subjected, largely as a result of direct or indirect human action. The practicalities of conservation are not, however, straightforward in many cases. In the conservation of island hotspots of biodiversity, in addition to the many scientific and technical issues involved, political, financial and socio-economic factors also have to be addressed. The priorities for conservation will be examined in the light of targets set by the recently approved CBD Global Strategy for Plant Conservation and in the wider context of sustainable development of island ecosystems and the needs and aspirations of the people who inhabit them. Particular attention will be given to the threats from invasive species and the resultant increasing homogenization of floras and faunas, leading to the ‘deinsularization’ of islands.
Resumo:
Organic farming has increased in popularity in recent years, primarily as a response to the perceived health and conservation benefits. While it is likely that conventional farming will be able to respond rapidly to variations in pest numbers and distribution resulting from climatic change, it is not clear if the same is true for organic farming. Few studies have looked at the responses of biological control organisms to climate change. Here, I review the direct and indirect eects of changes in temperature, atmospheric carbon dioxide and other climatic factors on the predators, parasitoids and pathogens of pest insects in temperate agriculture. Finally, I consider what research is needed to manage the anticipated change in pest insect dynamics and distributions.