931 resultados para Bioinformatics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intron splicing is one of the most important steps involved in the maturation process of a pre-mRNA. Although the sequence profiles around the splice sites have been studied extensively, the levels of sequence identity between the exonic sequences preceding the donor sites and the intronic sequences preceding the acceptor sites has not been examined as thoroughly. In this study we investigated identity patterns between the last 15 nucleotides of the exonic sequence preceding the 5' splice site and the intronic sequence preceding the 3' splice site in a set of human protein-coding genes that do not exhibit intron retention. We found that almost 60% of consecutive exons and introns in human protein-coding genes share at least two identical nucleotides at their 3' ends and, on average, the sequence identity length is 2.47 nucleotides. Based on our findings we conclude that the 3' ends of exons and introns tend to have longer identical sequences within a gene than when being taken from different genes. Our results hold even if the pairs are non-consecutive in the transcription order. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional methods for bacterial identification include Gram staining, culturing, and biochemical assays for phenotypic characterization of the causative organism. These methods can be time-consuming because they require in vitro cultivation of the microorganisms. Recently, however, it has become possible to obtain chemical profiles for lipids, peptides, and proteins that are present in an intact organism, particularly now that new developments have been made for the efficient ionization of biomolecules. MS has therefore become the state-of-the-art technology for microorganism identification in microbiological clinical diagnosis. Here, we introduce an innovative sample preparation method for nonculture-based identification of bacteria in milk. The technique detects characteristic profiles of intact proteins (mostly ribosomal) with the recently introduced MALDI SepsityperTM Kit followed by MALDI-MS. In combination with a dedicated bioinformatics software tool for databank matching, the method allows for almost real-time and reliable genus and species identification. We demonstrate the sensitivity of this protocol by experimentally contaminating pasteurized and homogenized whole milk samples with bacterial loads of 10(3)-10(8) colony-forming units (cfu) of laboratory strains of Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus. For milk samples contaminated with a lower bacterial load (104 cfu mL-1), bacterial identification could be performed after initial incubation at 37 degrees C for 4 h. The sensitivity of the method may be influenced by the bacterial species and count, and therefore, it must be optimized for the specific application. The proposed use of protein markers for nonculture-based bacterial identification allows for high-throughput detection of pathogens present in milk samples. This method could therefore be useful in the veterinary practice and in the dairy industry, such as for the diagnosis of subclinical mastitis and for the sanitary monitoring of raw and processed milk products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In protein databases there is a substantial number of proteins structurally determined but without function annotation. Understanding the relationship between function and structure can be useful to predict function on a large scale. We have analyzed the similarities in global physicochemical parameters for a set of enzymes which were classified according to the four Enzyme Commission (EC) hierarchical levels. Using relevance theory we introduced a distance between proteins in the space of physicochemical characteristics. This was done by minimizing a cost function of the metric tensor built to reflect the EC classification system. Using an unsupervised clustering method on a set of 1025 enzymes, we obtained no relevant clustering formation compatible with EC classification. The distance distributions between enzymes from the same EC group and from different EC groups were compared by histograms. Such analysis was also performed using sequence alignment similarity as a distance. Our results suggest that global structure parameters are not sufficient to segregate enzymes according to EC hierarchy. This indicates that features essential for function are rather local than global. Consequently, methods for predicting function based on global attributes should not obtain high accuracy in main EC classes prediction without relying on similarities between enzymes from training and validation datasets. Furthermore, these results are consistent with a substantial number of studies suggesting that function evolves fundamentally by recruitment, i.e., a same protein motif or fold can be used to perform different enzymatic functions and a few specific amino acids (AAs) are actually responsible for enzyme activity. These essential amino acids should belong to active sites and an effective method for predicting function should be able to recognize them. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding alternative splicing is crucial to elucidate the mechanisms behind several biological phenomena, including diseases. The huge amount of expressed sequences available nowadays represents an opportunity and a challenge to catalog and display alternative splicing events (ASEs). Although several groups have faced this challenge with relative success, we still lack a computational tool that uses a simple and straightforward method to retrieve, name and present ASEs. Here we present SPLOOCE, a portal for the analysis of human splicing variants. SPLOOCE uses a method based on regular expressions for retrieval of ASEs. We propose a simple syntax that is able to capture the complexity of ASEs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hierarchy of the segmentation cascade responsible for establishing the Drosophila body plan is composed by gap, pair-rule and segment polarity genes. However, no pair-rule stripes are formed in the anterior regions of the embryo. This lack of stripe formation, as well as other evidence from the literature that is further investigated here, led us to the hypothesis that anterior gap genes might be involved in a combinatorial mechanism responsible for repressing the cis-regulatory modules (CRMs) of hairy (h), even-skipped (eve), runt (run), and fushi-tarazu (ftz) anterior-most stripes. In this study, we investigated huckebein (hkb), which has a gap expression domain at the anterior tip of the embryo. Using genetic methods we were able to detect deviations from the wild-type patterns of the anterior-most pair-rule stripes in different genetic backgrounds, which were consistent with Hkb-mediated repression. Moreover, we developed an image processing tool that, for the most part, confirmed our assumptions. Using an hkb misexpression system, we further detected specific repression on anterior stripes. Furthermore, bioinformatics analysis predicted an increased significance of binding site clusters in the CRMs of h 1, eve 1, run 1 and ftz 1 when Hkb was incorporated in the analysis, indicating that Hkb plays a direct role in these CRMs. We further discuss that Hkb and Slp1, which is the other previously identified common repressor of anterior stripes, might participate in a combinatorial repression mechanism controlling stripe CRMs in the anterior parts of the embryo and define the borders of these anterior stripes. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Ontologies have increasingly been used in the biomedical domain, which has prompted the emergence of different initiatives to facilitate their development and integration. The Open Biological and Biomedical Ontologies (OBO) Foundry consortium provides a repository of life-science ontologies, which are developed according to a set of shared principles. This consortium has developed an ontology called OBO Relation Ontology aiming at standardizing the different types of biological entity classes and associated relationships. Since ontologies are primarily intended to be used by humans, the use of graphical notations for ontology development facilitates the capture, comprehension and communication of knowledge between its users. However, OBO Foundry ontologies are captured and represented basically using text-based notations. The Unified Modeling Language (UML) provides a standard and widely-used graphical notation for modeling computer systems. UML provides a well-defined set of modeling elements, which can be extended using a built-in extension mechanism named Profile. Thus, this work aims at developing a UML profile for the OBO Relation Ontology to provide a domain-specific set of modeling elements that can be used to create standard UML-based ontologies in the biomedical domain. Results: We have studied the OBO Relation Ontology, the UML metamodel and the UML profiling mechanism. Based on these studies, we have proposed an extension to the UML metamodel in conformance with the OBO Relation Ontology and we have defined a profile that implements the extended metamodel. Finally, we have applied the proposed UML profile in the development of a number of fragments from different ontologies. Particularly, we have considered the Gene Ontology (GO), the PRotein Ontology (PRO) and the Xenopus Anatomy and Development Ontology (XAO). Conclusions: The use of an established and well-known graphical language in the development of biomedical ontologies provides a more intuitive form of capturing and representing knowledge than using only text-based notations. The use of the profile requires the domain expert to reason about the underlying semantics of the concepts and relationships being modeled, which helps preventing the introduction of inconsistencies in an ontology under development and facilitates the identification and correction of errors in an already defined ontology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background An important challenge for transcript counting methods such as Serial Analysis of Gene Expression (SAGE), "Digital Northern" or Massively Parallel Signature Sequencing (MPSS), is to carry out statistical analyses that account for the within-class variability, i.e., variability due to the intrinsic biological differences among sampled individuals of the same class, and not only variability due to technical sampling error. Results We introduce a Bayesian model that accounts for the within-class variability by means of mixture distribution. We show that the previously available approaches of aggregation in pools ("pseudo-libraries") and the Beta-Binomial model, are particular cases of the mixture model. We illustrate our method with a brain tumor vs. normal comparison using SAGE data from public databases. We show examples of tags regarded as differentially expressed with high significance if the within-class variability is ignored, but clearly not so significant if one accounts for it. Conclusion Using available information about biological replicates, one can transform a list of candidate transcripts showing differential expression to a more reliable one. Our method is freely available, under GPL/GNU copyleft, through a user friendly web-based on-line tool or as R language scripts at supplemental web-site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background With the development of DNA hybridization microarray technologies, nowadays it is possible to simultaneously assess the expression levels of thousands to tens of thousands of genes. Quantitative comparison of microarrays uncovers distinct patterns of gene expression, which define different cellular phenotypes or cellular responses to drugs. Due to technical biases, normalization of the intensity levels is a pre-requisite to performing further statistical analyses. Therefore, choosing a suitable approach for normalization can be critical, deserving judicious consideration. Results Here, we considered three commonly used normalization approaches, namely: Loess, Splines and Wavelets, and two non-parametric regression methods, which have yet to be used for normalization, namely, the Kernel smoothing and Support Vector Regression. The results obtained were compared using artificial microarray data and benchmark studies. The results indicate that the Support Vector Regression is the most robust to outliers and that Kernel is the worst normalization technique, while no practical differences were observed between Loess, Splines and Wavelets. Conclusion In face of our results, the Support Vector Regression is favored for microarray normalization due to its superiority when compared to the other methods for its robustness in estimating the normalization curve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background The search for enriched (aka over-represented or enhanced) ontology terms in a list of genes obtained from microarray experiments is becoming a standard procedure for a system-level analysis. This procedure tries to summarize the information focussing on classification designs such as Gene Ontology, KEGG pathways, and so on, instead of focussing on individual genes. Although it is well known in statistics that association and significance are distinct concepts, only the former approach has been used to deal with the ontology term enrichment problem. Results BayGO implements a Bayesian approach to search for enriched terms from microarray data. The R source-code is freely available at http://blasto.iq.usp.br/~tkoide/BayGO in three versions: Linux, which can be easily incorporated into pre-existent pipelines; Windows, to be controlled interactively; and as a web-tool. The software was validated using a bacterial heat shock response dataset, since this stress triggers known system-level responses. Conclusion The Bayesian model accounts for the fact that, eventually, not all the genes from a given category are observable in microarray data due to low intensity signal, quality filters, genes that were not spotted and so on. Moreover, BayGO allows one to measure the statistical association between generic ontology terms and differential expression, instead of working only with the common significance analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background One goal of gene expression profiling is to identify signature genes that robustly distinguish different types or grades of tumors. Several tumor classifiers based on expression profiling have been proposed using microarray technique. Due to important differences in the probabilistic models of microarray and SAGE technologies, it is important to develop suitable techniques to select specific genes from SAGE measurements. Results A new framework to select specific genes that distinguish different biological states based on the analysis of SAGE data is proposed. The new framework applies the bolstered error for the identification of strong genes that separate the biological states in a feature space defined by the gene expression of a training set. Credibility intervals defined from a probabilistic model of SAGE measurements are used to identify the genes that distinguish the different states with more reliability among all gene groups selected by the strong genes method. A score taking into account the credibility and the bolstered error values in order to rank the groups of considered genes is proposed. Results obtained using SAGE data from gliomas are presented, thus corroborating the introduced methodology. Conclusion The model representing counting data, such as SAGE, provides additional statistical information that allows a more robust analysis. The additional statistical information provided by the probabilistic model is incorporated in the methodology described in the paper. The introduced method is suitable to identify signature genes that lead to a good separation of the biological states using SAGE and may be adapted for other counting methods such as Massive Parallel Signature Sequencing (MPSS) or the recent Sequencing-By-Synthesis (SBS) technique. Some of such genes identified by the proposed method may be useful to generate classifiers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Transcript enumeration methods such as SAGE, MPSS, and sequencing-by-synthesis EST "digital northern", are important high-throughput techniques for digital gene expression measurement. As other counting or voting processes, these measurements constitute compositional data exhibiting properties particular to the simplex space where the summation of the components is constrained. These properties are not present on regular Euclidean spaces, on which hybridization-based microarray data is often modeled. Therefore, pattern recognition methods commonly used for microarray data analysis may be non-informative for the data generated by transcript enumeration techniques since they ignore certain fundamental properties of this space. Results Here we present a software tool, Simcluster, designed to perform clustering analysis for data on the simplex space. We present Simcluster as a stand-alone command-line C package and as a user-friendly on-line tool. Both versions are available at: http://xerad.systemsbiology.net/simcluster. Conclusion Simcluster is designed in accordance with a well-established mathematical framework for compositional data analysis, which provides principled procedures for dealing with the simplex space, and is thus applicable in a number of contexts, including enumeration-based gene expression data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Several mathematical and statistical methods have been proposed in the last few years to analyze microarray data. Most of those methods involve complicated formulas, and software implementations that require advanced computer programming skills. Researchers from other areas may experience difficulties when they attempting to use those methods in their research. Here we present an user-friendly toolbox which allows large-scale gene expression analysis to be carried out by biomedical researchers with limited programming skills. Results Here, we introduce an user-friendly toolbox called GEDI (Gene Expression Data Interpreter), an extensible, open-source, and freely-available tool that we believe will be useful to a wide range of laboratories, and to researchers with no background in Mathematics and Computer Science, allowing them to analyze their own data by applying both classical and advanced approaches developed and recently published by Fujita et al. Conclusion GEDI is an integrated user-friendly viewer that combines the state of the art SVR, DVAR and SVAR algorithms, previously developed by us. It facilitates the application of SVR, DVAR and SVAR, further than the mathematical formulas present in the corresponding publications, and allows one to better understand the results by means of available visualizations. Both running the statistical methods and visualizing the results are carried out within the graphical user interface, rendering these algorithms accessible to the broad community of researchers in Molecular Biology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background A large number of probabilistic models used in sequence analysis assign non-zero probability values to most input sequences. To decide when a given probability is sufficient the most common way is bayesian binary classification, where the probability of the model characterizing the sequence family of interest is compared to that of an alternative probability model. We can use as alternative model a null model. This is the scoring technique used by sequence analysis tools such as HMMER, SAM and INFERNAL. The most prevalent null models are position-independent residue distributions that include: the uniform distribution, genomic distribution, family-specific distribution and the target sequence distribution. This paper presents a study to evaluate the impact of the choice of a null model in the final result of classifications. In particular, we are interested in minimizing the number of false predictions in a classification. This is a crucial issue to reduce costs of biological validation. Results For all the tests, the target null model presented the lowest number of false positives, when using random sequences as a test. The study was performed in DNA sequences using GC content as the measure of content bias, but the results should be valid also for protein sequences. To broaden the application of the results, the study was performed using randomly generated sequences. Previous studies were performed on aminoacid sequences, using only one probabilistic model (HMM) and on a specific benchmark, and lack more general conclusions about the performance of null models. Finally, a benchmark test with P. falciparum confirmed these results. Conclusions Of the evaluated models the best suited for classification are the uniform model and the target model. However, the use of the uniform model presents a GC bias that can cause more false positives for candidate sequences with extreme compositional bias, a characteristic not described in previous studies. In these cases the target model is more dependable for biological validation due to its higher specificity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background The thymus is a central lymphoid organ, in which bone marrow-derived T cell precursors undergo a complex process of maturation. Developing thymocytes interact with thymic microenvironment in a defined spatial order. A component of thymic microenvironment, the thymic epithelial cells, is crucial for the maturation of T-lymphocytes through cell-cell contact, cell matrix interactions and secretory of cytokines/chemokines. There is evidence that extracellular matrix molecules play a fundamental role in guiding differentiating thymocytes in both cortical and medullary regions of the thymic lobules. The interaction between the integrin α5β1 (CD49e/CD29; VLA-5) and fibronectin is relevant for thymocyte adhesion and migration within the thymic tissue. Our previous results have shown that adhesion of thymocytes to cultured TEC line is enhanced in the presence of fibronectin, and can be blocked with anti-VLA-5 antibody. Results Herein, we studied the role of CD49e expressed by the human thymic epithelium. For this purpose we knocked down the CD49e by means of RNA interference. This procedure resulted in the modulation of more than 100 genes, some of them coding for other proteins also involved in adhesion of thymocytes; others related to signaling pathways triggered after integrin activation, or even involved in the control of F-actin stress fiber formation. Functionally, we demonstrated that disruption of VLA-5 in human TEC by CD49e-siRNA-induced gene knockdown decreased the ability of TEC to promote thymocyte adhesion. Such a decrease comprised all CD4/CD8-defined thymocyte subsets. Conclusion Conceptually, our findings unravel the complexity of gene regulation, as regards key genes involved in the heterocellular cell adhesion between developing thymocytes and the major component of the thymic microenvironment, an interaction that is a mandatory event for proper intrathymic T cell differentiation.