934 resultados para Bifurcation Diagrams
Resumo:
Dans ce mémoire, on s'intéresse à l'action du groupe des transformations affines et des homothéties sur l'axe du temps des systèmes différentiels quadratiques à foyer faible d'ordre trois, dans le plan. Ces systèmes sont importants dans le cadre du seizième problème d'Hilbert. Le diagramme de bifurcation a été produit à l'aide de la forme normale de Li dans des travaux de Andronova [2] et Artès et Llibre [4], sans utiliser le plan projectif comme espace des paramètres ni de méthodes globales. Dans [7], Llibre et Schlomiuk ont utilisé le plan projectif comme espace des paramètres et des notions à caractère géométrique global (invariants affines et topologiques). Ce diagramme contient 18 portraits de phase et certains de ces portraits sont répétés dans des parties distinctes du diagramme. Ceci nous mène à poser la question suivante : existe-t-il des systèmes distincts, correspondant à des valeurs distinctes de paramètres, se trouvant sur la même orbite par rapport à l'action du groupe? Dans ce mémoire, on prouve un résultat original : l'action du groupe n'est pas triviale sur la forme de Li (théorème 3.1), ni sur la forme normale de Bautin (théorème 4.1). En utilisant le deuxième résultat, on construit l'espace topologique quotient des systèmes quadratiques à foyer faible d'ordre trois par rapport à l'action de ce groupe.
Resumo:
Nous proposons une approche d’extraction des diagrammes de séquence à partir de programmes orientés objets en combinant l’analyse statique et dynamique. Notre objectif est d’extraire des diagrammes compacts mais contenant le plus d’informations possible pour faciliter la compréhension du comportement d’un programme. Pour cette finalité, nous avons défini un ensemble d’heuristiques pour filtrer les événements d’exécution les moins importants et extraire les structures de contrôles comme les boucles et la récursivité. Nous groupons aussi les objets en nous basant sur leurs types respectifs. Pour tenir compte des variations d’un même scénario, notre approche utilise plusieurs traces d’exécution et les aligne pour couvrir le plus possible le comportement du programme. Notre approche a été évaluée sur un système de simulation d’ATM. L’étude de cas montre que notre approche produit des diagrammes de séquence concis et informatifs.
Resumo:
Submarine hull structure is a watertight envelope, under hydrostatic pressure when in operation. Stiffened cylindrical shells constitute the major portion of these submarine hulls and these thin shells under compression are susceptible to buckling failure. Normally loss of stability occurs at the limit point rather than at the bifurcation point and the stability analysis has to consider the change in geometry at each load step. Hence geometric nonlinear analysis of the shell forms becomes. a necessity. External hydrostatic pressure will follow the deformed configuration of the shell and hence follower force effect has to be accounted for. Computer codes have been developed based on all-cubic axisymmetric cylindrical shell finite element and discrete ring stiffener element for linear elastic, linear buckling and geometric nonIinear analysis of stiffened cylindrical shells. These analysis programs have the capability to treat hydrostatic pressure as a radial load and as a follower force. Analytical investigations are carried out on two attack submarine cylindrical hull models besides standard benchmark problems. In each case, the analysis has been carried out for interstiffener, interdeepframe and interbulkhead configurations. The shell stiffener attachment in each of this configuration has been represented by the simply supported-simply supported, clamped-clamped and fixed-fixed boundary conditions in this study. The results of the analytical investigations have been discussed and the observations and conclusions are described. Rotation restraint at the ends is influential for interstiffener and interbulkhead configurations and the significance of axial restraint becomes predominant in the interbulkhead configuration. The follower force effect of hydrostatic pressure is not significant in interstiffener and interdeepframe configurations where as it has very high detrimental effect on buckling pressure on interbulkhead configuration. The geometric nonlinear interbulkhead analysis incorporating follower force effect gives the critical value of buckling pressure and this analysis is recommended for the determination of collapse pressure of stiffened cylindrical submarine shells.
Resumo:
The effect of coupling two chaotic Nd:YAG lasers with intracavity KTP crystal for frequency doubling is numerically studied for the case of the laser operating in three longitudinal modes. It is seen that the system goes from chaotic to periodic and then to steady state as the coupling constant is increased. The intensity time series and phase diagrams are drawn and the Lyapunov characteristic exponent is calculated to characterize the chaotic and periodic regions.
Resumo:
We have numerically studied the behavior of a two-mode Nd-YAG laser with an intracavity KTP crystal. It is found that when the parameter, which is a measure of the relative orientations of the KTP crystal with respect to the Nd-YAG crystal, is varied continuously, the output intensity fluctuations change from chaotic to stable behavior through a sequence of reverse period doubling bifurcations. The graph of the intensity in the X-polarized mode against that in the Y-polarized mode shows a complex pattern in the chaotic regime. The Lyapunov exponent is calculated for the chaotic and periodic regions.
Resumo:
The effect of coupling on two high frequency modulated semiconductor lasers is numerically studied. The phase diagrams and bifurcatio.n diagrams are drawn. As the coupling constant is increased the system goes from chaotic to periodic behavior through a reverse period doubling sequence. The Lyapunov exponent is calculated to characterize chaotic and periodic regions.
Resumo:
We present the analytical investigations on a logistic map with a discontinuity at the centre. An explanation for the bifurcation phenomenon in discontinuous systems is presented. We establish that whenever the elements of an n-cycle (n > 1) approach the discontinuities of the nth iterate of the map, a bifurcation other than the usual period-doubling one takes place. The periods of the cycles decrease in an arithmetic progression, as the control parameter is varied. The system also shows the presence of multiple attractors. Our results are verified by numerical experiments as well.
Resumo:
Results of a numerical study of synchronisation of two directly modulated semiconductor lasers, using bi-directional coupling, are presented. The effect of stepwise increase in the coupling strength (C) on the synchronisation of the chaotic outputs of two such lasers is studied, with the help of parameter space plots, synchronisation error plots, phase diagrams and time series outputs. Numerical results indicate that as C increases, the system achieves synchronisation as well as stability together with an increase in the output power. The stability of the synchronised states is checked by applying a perturbation to the system after it becomes synchronised and then noting the time it takes to regain synchronisation. For lower values of C the system does not regain synchronisation. But, with higher values synchronisation is regained within a very short time.
Resumo:
We analyse numerically the bifurcation structure of a two-dimensional noninvertible map and show that different periodic cycles are arranged in it exactly in the same order as in the case of the logistic map. We also show that this map satisfies the general criteria for the existence of Sarkovskii ordering, which supports our numerical result. Incidently, this is the first report of the existence of Sarkovskii ordering in a two-dimensional map.
Resumo:
We study the period-doubling bifurcations to chaos in a logistic map with a nonlinearly modulated parameter and show that the bifurcation structure is modified significantly. Using the renormalisation method due to Derrida et al. we establish the universal behaviour of the system at the onset of chaos.
Resumo:
We present a continuum model for doped manganites which consist of two species of quantum spin-1 / 2 fermions interacting with classical spin fields. The phase structure at zero temperature turns out to be considerably rich: antiferromagnetic insulator, antiferromagnetic two band conducting, canted two band conducting, canted one band conducting, and ferromagnetic one band conducting phases are identified, all of them being stable against phase separation. There are also regions in the phase diagram where phase separation occurs
Resumo:
Integer filling factor phases of many-electron vertically coupled diatomic artificial quantum dot molecules are investigated for different values of the interdot coupling. The experimental results are analyzed within local-spin density functional theory for which we have determined a simple lateral confining potential law that can be scaled for the different coupling regimes, and Hartree-Fock theory. Maximum density droplets composed of electrons in both bonding and antibonding or just bonding states are revealed, and interesting isospin-flip physics appears for weak interdot coupling when the systematic depopulation of antibonding states leads to changes in isospin.
Resumo:
At intermediate depths of the Arabian Sea, the circulation and characteristics of water are more influenced by the high saline waters from the north and low saline waters from the south of equator. The interaction of these waters which greatly differ in characteristics is less understood compared to that at the upper layers. An understanding of the nature of the intermediate waters is of vital importance not only because of the unusual characteristics of the waters but also due to the influx of the different water masses from the neighbouring Red Sea and Persian Gulf. Hence, in the present investigation, it is proposed to study the water characteristics and current structure of the intermediate waters in the Arabian Sea through the distribution of the water properties on the isanosteric surfaces of 100, 80, 60 and 4O—cl/t, vertical sections, and scatter diagrams An attempt is also made to present the potential vorticity between different steric levels to understand the circulation and mixing processes. Data collected during and subsequent to International Indian Ocean Expedition (IIOE) are used for this study. The thesis has been divided into six chapters with further sub divisions
Resumo:
The multifractal dimension of chaotic attractors has been studied in a weakly coupled superlattice driven by an incommensurate sinusoidal voltage as a function of the driving voltage amplitude. The derived multifractal dimension for the observed bifurcation sequence shows different characteristics for chaotic, quasiperiodic, and frequency-locked attractors. In the chaotic regime, strange attractors are observed. Even in the quasiperiodic regime, attractors with a certain degree of strangeness may exist. From the observed multifractal dimensions, the deterministic nature of the chaotic oscillations is clearly identified.