957 resultados para Basil, Saint, Bishop of Caesarea, ca. 329-379.
Resumo:
Connexin45 (Cx45) hemichannels (HCs) open in the absence of Ca(2+) and close in its presence. To elucidate the underlying mechanisms, we examined the role of extra- and intracellular Ca(2+) on the electrical properties of HCs. Experiments were performed on HeLa cells expressing Cx45 using electrical (voltage clamp) and optical (Ca(2+) imaging) methods. HCs exhibit a time- and voltage-dependent current (I(hc)), activating with depolarization and inactivating with hyperpolarization. Elevation of [Ca(2+)](o) from 20 nM to 2 μM reversibly decreases I(hc), decelerates its rate of activation, and accelerates its deactivation. Our data suggest that [Ca(2+)](o) modifies the channel properties by adhering to anionic sites in the channel lumen and/or its outer vestibule. In this way, it blocks the channel pore and reversibly lowers I(hc) and modifies its kinetics. Rapid lowering of [Ca(2+)](o) from 2 mM to 20 nM, achieved early during a depolarizing pulse, led to an outward I(hc) that developed with virtually no delay and grew exponentially in time paralleled by unaffected [Ca(2+)](i). A step increase of [Ca(2+)](i) evoked by photorelease of Ca(2+) early during a depolarizing pulse led to a transient decrease of I(hc) superimposed on a growing outward I(hc); a step decrease of [Ca(2+)](i) elicited by photoactivation of a Ca(2+) scavenger provoked a transient increase in I(hc). Hence, it is tempting to assume that Ca(2+) exerts a direct effect on Cx45 hemichannels.
Resumo:
When Huxley proposed, Blythe imagined herself fifty years into the future at his funeral. He was such a good man, they’d say. Seventy-two is too young, they’d say. She’d nod and, she had imagined, remember this moment – them lounging in her bed during the early afternoon with the sunlight threatening to burst from behind the drawn shades, him lying on his side with his left arm anchored around her waist, and the tickle of his thumb as he traced circles on her bellybutton. She rubbed her nose against his neck and breathed. His scent was different from that of Walter. Huxley smelled of pears and basil. Walter smelled of leather and soap. She didn’t smell Walter intentionally, of course. He walked into the White Dog the prior day while she was drinking a mint-mocha cappuccino and studying for an exam on medical physiology. The wind whiffed his odor towards her. She didn’t look at him, but she couldn’t stop from inhaling. “People get married after college,” Huxley swung his right leg over and straddled her, forcing her to look at him. “It’s almost been a year since we graduated. It’s what we should do.” She had wondered if he could donate organs if he were seventy-two years old. Not his liver or heart or anything like that, of course, but maybe his eyes. It’d be a shame if they couldn’t preserve his eyes. She noticed them first: they were alert and misty blue, like Santa’s. But then she wondered if eye characteristics like color were even changed during cornea transplants. Walter had plain brown eyes. She hated brown eyes. She told people that she had brown eyes, because they were dark and no one ever looked close enough. Except Huxley. They were at dinner with mutual friends and were talking about eye color, and how they all wished that theirs were like those of the young Afghan girl on the 1985 cover of National Geographic.
Resumo:
The Ca(2+) content of the sarcoplasmic reticulum (SR) of cardiac myocytes is thought to play a role in the regulation and termination of SR Ca(2+) release through the ryanodine receptors (RyRs). Experimentally altering the amount of Ca(2+) within the SR with the membrane-permeant low affinity Ca(2+) chelator TPEN could improve our understanding of the mechanism(s) by which SR Ca(2+) content and SR Ca(2+) depletion can influence Ca(2+) release sensitivity and termination. We applied laser-scanning confocal microscopy to examine SR Ca(2+) release in freshly isolated ventricular myocytes loaded with fluo-3, while simultaneously recording membrane currents using the whole-cell patch-clamp technique. Following application of TPEN, local spontaneous Ca(2+) releases increased in frequency and developed into cell-wide Ca(2+) waves. SR Ca(2+) load after TPEN application was found to be reduced to about 60% of control. Isolated cardiac RyRs reconstituted into lipid bilayers exhibited a two-fold increase of their open probability. At the low concentration used (20-40muM), TPEN did not significantly inhibit the SR-Ca(2+)-ATPase in SR vesicles. These results indicate that TPEN, traditionally used as a low affinity Ca(2+) chelator in intracellular Ca(2+) stores, may also act directly on the RyRs inducing an increase in their open probability. This in turn results in an increased Ca(2+) leak from the SR leading to its Ca(2+) depletion. Lowering of SR Ca(2+) content may be a mechanism underlying the recently reported cardioprotective and antiarrhythmic features of TPEN.
Resumo:
The Ca(2+)-binding proteins parvalbumin (PV) and calbindin D-28k (CB) are key players in the intracellular Ca(2+)-buffering in specific cells including neurons and have profound effects on spatiotemporal aspects of Ca(2+) transients. The previously observed increase in mitochondrial volume density in fast-twitch muscle of PV-/- mice is viewed as a specific compensation mechanism to maintain Ca(2+) homeostasis. Since cerebellar Purkinje cells (PC) are characterized by high expression levels of the Ca(2+) buffers PV and CB, the question was raised, whether homeostatic mechanisms are induced in PC lacking these buffers. Mitochondrial volume density, i.e. relative mitochondrial mass was increased by 40% in the soma of PV-/- PC. Upregulation of mitochondrial volume density was not homogenous throughout the soma, but was selectively restricted to a peripheral region of 1.5 microm width underneath the plasma membrane. Accompanied was a decreased surface of subplasmalemmal smooth endoplasmic reticulum (sPL-sER) in a shell of 0.5 microm thickness underneath the plasma membrane. These alterations were specific for the absence of the "slow-onset" buffer PV, since in CB-/- mice neither changes in peripheral mitochondria nor in sPL-sER were observed. This implicates that the morphological alterations are aimed to specifically substitute the function of the slow buffer PV. We propose a novel concept that homeostatic mechanisms of components involved in Ca(2+) homeostasis do not always occur at the level of similar or closely related molecules. Rather the cell attempts to restore spatiotemporal aspects of Ca(2+) signals prevailing in the undisturbed (wildtype) situation by subtly fine tuning existing components involved in the regulation of Ca(2+) fluxes.
Resumo:
We describe the measurement, at 100 K, of the SIMS relative sensitivity factors (RSFs) of the main physiological cations Na+, K+, Mg2+, and Ca2+ in frozen-hydrated (F-H) ionic solutions. Freezing was performed by either plunge freezing or high-pressure freezing. We also report the measurement of the RSFs in flax fibers, which are a model for ions in the plant cell wall, and in F-H ionic samples, which are a model for ions in the vacuole. RSFs were determined under bombardment with neutral oxygen (FAB) for both the fibers and the F-H samples. We show that referencing to ice-characteristic secondary ions is of little value in determining RSFs and that referencing to K is preferable. The RSFs of Na relative to K and of Ca relative to Mg in F-H samples are similar to their respective values in fiber samples, whereas the RSFs of both Ca and Mg relative to K are lower in fibers than in F-H samples. Our data show that the physical factors important for the determination of the RSFs are not the same in F-H samples and in homogeneous matrixes. Our data show that it is possible to perform a SIMS relative quantification of the cations in frozen-hydrated samples with an accuracy on the order of 15%. Referencing to K permits the quantification of the ionic ratios, even when the absolute concentration of the referencing ion is unknown. This is essential for physiological studies of F-H biological samples.
Resumo:
Platelets are known to contain platelet factor 4 and beta-thromboglobulin, alpha-chemokines containing the CXC motif, but recent studies extended the range to the beta-family characterized by the CC motif, including RANTES and Gro-alpha. There is also evidence for expression of chemokine receptors CCR4 and CXCR4 in platelets. This study shows that platelets have functional CCR1, CCR3, CCR4, and CXCR4 chemokine receptors. Polymerase chain reaction detected chemokine receptor messenger RNA in platelet RNA. CCR1, CCR3, and especially CCR4 gave strong signals; CXCR1 and CXCR4 were weakly positive. Flow cytometry with specific antibodies showed the presence of a clear signal for CXCR4 and weak signals for CCR1 and CCR3, whereas CXCR1, CXCR2, CXCR3, and CCR5 were all negative. Immunoprecipitation and Western blotting with polyclonal antibodies to cytoplasmic peptides clearly showed the presence of CCR1 and CCR4 in platelets in amounts comparable to monocytes and CCR4 transfected cells, respectively. Chemokines specific for these receptors, including monocyte chemotactic protein 1, macrophage inflammatory peptide 1alpha, eotaxin, RANTES, TARC, macrophage-derived chemokine, and stromal cell-derived factor 1, activate platelets to give Ca(++) signals, aggregation, and release of granule contents. Platelet aggregation was dependent on release of adenosine diphosphate (ADP) and its interaction with platelet ADP receptors. Part, but not all, of the Ca(++) signal was due to ADP release feeding back to its receptors. Platelet activation also involved heparan or chondroitin sulfate associated with the platelet surface and was inhibited by cleavage of these glycosaminoglycans or by heparin or low molecular weight heparin. These platelet receptors may be involved in inflammatory or allergic responses or in platelet activation in human immunodeficiency virus infection.
Resumo:
Studies of subcellular Ca(2+) signaling rely on methods for labeling cells with fluorescent Ca(2+) indicator dyes. In this study, we demonstrate the use of single-cell electroporation for Ca(2+) indicator loading of individual neurons and small neuronal networks in rat neocortex in vitro and in vivo. Brief voltage pulses were delivered through glass pipettes positioned close to target cells. This approach resulted in reliable and rapid (within seconds) loading of somata and subsequent complete labeling of dendritic and axonal arborizations. By using simultaneous whole-cell recordings in brain slices, we directly addressed the effect of electroporation on neurons. Cell viability was high (about 85%) with recovery from the membrane permeabilization occurring within a minute. Electrical properties of recovered cells were indistinguishable before and after electroporation. In addition, Ca(2+) transients with normal appearance could be evoked in dendrites, spines, and axonal boutons of electroporated cells. Using negative-stains of somata, targeted single-cell electroporation was equally applicable in vivo. We conclude that electroporation is a simple approach that permits Ca(2+) indicator loading of multiple cells with low background staining within a short amount of time, which makes it especially well suited for functional imaging of subcellular Ca(2+) dynamics in small neuronal networks.
Resumo:
AIMS: Cardiac myopathies are the second leading cause of death in patients with Duchenne and Becker muscular dystrophy, the two most common and severe forms of a disabling striated muscle disease. Although the genetic defect has been identified as mutations of the dystrophin gene, very little is known about the molecular and cellular events leading to progressive cardiac muscle damage. Dystrophin is a protein linking the cytoskeleton to a complex of transmembrane proteins that interact with the extracellular matrix. The fragility of the cell membrane resulting from the lack of dystrophin is thought to cause an excessive susceptibility to mechanical stress. Here, we examined cellular mechanisms linking the initial membrane damage to the dysfunction of dystrophic heart. METHODS AND RESULTS: Cardiac ventricular myocytes were enzymatically isolated from 5- to 9-month-old dystrophic mdx and wild-type (WT) mice. Cells were exposed to mechanical stress, applied as osmotic shock. Stress-induced cytosolic and mitochondrial Ca(2+) signals, production of reactive oxygen species (ROS), and mitochondrial membrane potential were monitored with confocal microscopy and fluorescent indicators. Pharmacological tools were used to scavenge ROS and to identify their possible sources. Osmotic shock triggered excessive cytosolic Ca(2+) signals, often lasting for several minutes, in 82% of mdx cells. In contrast, only 47% of the WT cardiomyocytes responded with transient and moderate intracellular Ca(2+) signals. On average, the reaction was 6-fold larger in mdx cells. Removal of extracellular Ca(2+) abolished these responses, implicating Ca(2+) influx as a trigger for abnormal Ca(2+) signalling. Our further experiments revealed that osmotic stress in mdx cells produced an increase in ROS production and mitochondrial Ca(2+) overload. The latter was followed by collapse of the mitochondrial membrane potential, an early sign of cell death. CONCLUSION: Overall, our findings reveal that excessive intracellular Ca(2+) signals and ROS generation link the initial sarcolemmal injury to mitochondrial dysfunctions. The latter possibly contribute to the loss of functional cardiac myocytes and heart failure in dystrophy. Understanding the sequence of events of dystrophic cell damage and the deleterious amplification systems involved, including several positive feed-back loops, may allow for a rational development of novel therapeutic strategies.
Resumo:
The inhibitor cystine-knot motif identified in the structure of CSTX-1 from Cupiennius salei venom suggests that this toxin may act as a blocker of ion channels. Whole-cell patch-clamp experiments performed on cockroach neurons revealed that CSTX-1 produced a slow voltage-independent block of both mid/low- (M-LVA) and high-voltage-activated (HVA) insect Ca(v) channels. Since C. salei venom affects both insect as well as rodent species, we investigated whether Ca(v) channel currents of rat neurons are also inhibited by CSTX-1. CSTX-1 blocked rat neuronal L-type, but no other types of HVA Ca(v) channels, and failed to modulate LVA Ca(v) channel currents. Using neuroendocrine GH3 and GH4 cells, CSTX-1 produced a rapid voltage-independent block of L-type Ca(v) channel currents. The concentration-response curve was biphasic in GH4 neurons and the subnanomolar IC(50) values were at least 1000-fold lower than in GH3 cells. L-type Ca(v) channel currents of skeletal muscle myoballs and other voltage-gated ion currents of rat neurons, such as I(Na(v)) or I(K(v)) were not affected by CSTX-1. The high potency and selectivity of CSTX-1 for a subset of L-type channels in mammalian neurons may enable the toxin to be used as a molecular tool for the investigation of this family of Ca(v) channels.
Resumo:
A new technique was evaluated to identify changes in bone metabolism directly at high sensitivity through isotopic labeling of bone Ca. Six women with low BMD were labeled with 41Ca up to 700 days and treated for 6 mo with risedronate. Effect of treatment on bone could be identified using 41Ca after 4-8 wk in each individual. INTRODUCTION: Isotopic labeling of bone using 41Ca, a long-living radiotracer, has been proposed as an alternative approach for measuring changes in bone metabolism to overcome current limitations of available techniques. After isotopic labeling of bone, changes in urinary 41Ca excretion reflect changes in bone Ca balance. The aim of this study was to validate this new technique against established measures. Changes in bone Ca balance were induced by giving a bisphosphonate. MATERIALS AND METHODS: Six postmenopausal women with diagnosed osteopenia/osteoporosis received a single oral dose of 100 nCi 41Ca for skeleton labeling. Urinary 41Ca/40Ca isotope ratios were monitored by accelerator mass spectrometry up to 700 days after the labeling process. Subjects received 35 mg risedronate per week for 6 mo. Effect of treatment was monitored using the 41Ca signal in urine and parallel measurements of BMD by DXA and biochemical markers of bone metabolism in urine and blood. RESULTS: Positive response to treatment was confirmed by BMD measurements, which increased for spine by +3.0% (p = 0.01) but not for hip. Bone formation markers decreased by -36% for bone alkaline phosphatase (BALP; p = 0.002) and -59% for procollagen type I propeptides (PINP; p = 0.001). Urinary deoxypyridinoline (DPD) and pyridinoline (PYD) were reduced by -21% (p = 0.019) and -23% (p = 0.009), respectively, whereas serum and urinary carboxy-terminal teleopeptides (CTXs) were reduced by -60% (p = 0.001) and -57.0% (p = 0.001), respectively. Changes in urinary 41Ca excretion paralleled findings for conventional techniques. The urinary 41Ca/40Ca isotope ratio was shifted by -47 +/- 10% by the intervention. Population pharmacokinetic analysis (NONMEM) of the 41Ca data using a linear three-compartment model showed that bisphosphonate treatment reduced Ca transfer rates between the slowly exchanging compartment (bone) and the intermediate fast exchanging compartment by 56% (95% CI: 45-58%). CONCLUSIONS: Isotopic labeling of bone using 41Ca can facilitate human trials in bone research by shortening of intervention periods, lowering subject numbers, and having easier conduct of cross-over studies compared with conventional techniques.
Resumo:
Increased demand for forest-derived biomass has resulted in changes in harvest intensities in Finland. Conventional stem-only harvest (CH) has to some extent been replaced with whole-tree harvest (WTH). The latter involves a greater removal of nutrients from the forest ecosystem, as all the above ground biomass is exported from the site. This has raised concerns that WTH could result in large changes in the nutrient dynamics of a forest stand and could eventually lower its site productivity. Little empirical data exists to support this assumption as only a limited number of studies have been conducted on the topic. A majority of these discuss the short-term effects, thus the long-term consequences remain unknown. The objective of this study was to compare differences in soil properties after CH and WTH in a fertile Norway spruce (Picea abies (L) Karst.) stand in Southern Finland. The site was clear-felled in August 2000 and spruce seedlings were planted in the following summer. Soil sampling in the form of systematic randomized sampling was carried out in May 2011. Changes in base saturation, cation exchange capacity, elemental pools (total and exchangeable) and acidity were studied in both organic and mineral horizons. The results indicate that WTH lowered effective cation exchange capacity and base saturation particularly in the humus layer. The pools of exchangeable Al and Fe were increased in the humus layer, whereas the amount of exchangeable Ca decreased in both layers. WTH also resulted in lower Ca/Al-ratios across the sampled layers. Treatment did not have a significant effect on pH, total pools of elements or on the C/N-ratio of the soil. The results suggest that although the stand possesses significant pools of nutrients at present, WTH, if continued, could have long-term effects on site productivity.
Resumo:
BACKGROUND AND PURPOSE: Little data exists about longterm outcome, quality of life (QOL) and its predictors after spontaneous cervical artery dissections (sCAD). METHODS: Clinical and radiological data of 114 patients with sCAD were collected prospectively. Six patients died within 3 months, the remaining 108 were contacted after a mean of 1498 days (range: 379-3455), 99 survivors (92 %) replied. QOL, assessed with the stroke-specific QOL scale (SSQOL), and functional abilities, measured with modified Rankin Scale (mRS) were compared, and predictors of QOL were analyzed. Subgroup analyses were performed for patients with ischemic stroke, those with isolated local symptoms or transient ischemic symptoms and those without significant disabilities (mRS 0-1) at follow-up. RESULTS: Seventy-one of 99 patients (72 %) had no significant disability, but only 53 (54 %) reported a good QOL (SS-QOL > or = 4). Compared to the self-rated premorbid QOL of all patients, SS-QOL was impaired after sCAD (p < 0.001); impairment of QOL was observed in patients with ischemic stroke (p < 0.001), in patients with isolated local or transient ischemic symptoms (p < 0.038) and those without significant disabilities at follow-up (p = 0.013). Nevertheless, low mRS was associated with better overall QOL (Kendall's tau > 0.5). High National Institute of Health Stroke Scale score on admission and higher age were independent predictors of impaired QOL (p < 0.05). CONCLUSION: QOL is impaired in almost half of long-term survivors after sCAD, even in patients with local or transient symptoms or without functional disability. Impairment of QOL is a surprisingly frequent long-term sequela after sCAD and deserves attention as an outcome measure in these patients.
Resumo:
The Codex Biblioteca Casanatense 1409 which has for a long time been neg- lected in Parzival scholarship, transmits German translations of three continuations of Chre ́tien de Troyes‘ Roman de Perceval ou Le Conte du Graal together with the last two books (XV/XVI) of Wolfram von Eschenbach’s Parzival. This article supports the for- merly casually made assumption that the Casanatense manuscript is in fact a direct copy of Codex Donaueschingen 97, the so called Rappoltsteiner Parzifal. As is to be shown, marks in the Donaueschingen codex, as well as significant copying errors in the Casanatense text and its treatment of initials suggest a direct relationship of the two witnesses. The notion of ,writing scene‘ (Schreibszene) with its implications of linguistic semantics, instrumentality, gesture and self reflection, proposed in modern literary scholarship, can help to understand peculiarities of the copying process in the Casanatensis, such as the numerous conceptual abbreviations and the adaptations in the handling of headings. In the final part of the article, the hypothesis is corroborated, that the copy of the Casa- natensis might have been produced in the surroundings of Lamprecht von Brunn (ca. 1320–1399), bishop of Strasburg and Bamberg, and counsellor of the emperor Charles IV.
Resumo:
Human embryonic kidney cells 293 (HEK293) are widely used as cellular heterologous expression systems to study transfected ion channels. This work characterizes the endogenous expression of TRPM4 channels in HEK293 cells. TRPM4 is an intracellular Ca(2+)-activated non-selective cationic channel expressed in many cell types. Western blot analyses have revealed the endogenous expression of TRPM4. Single channel 22pS conductance with a linear current-voltage relationship was observed using the inside-out patch clamp configuration in the presence of intracellular Ca(2+). The channels were permeable to the monovalent cations Na(+) and K(+), but not to Ca(2+). The open probability was voltage-dependent, being higher at positive potentials. Using the whole-cell patch clamp "ruptured patch" configuration, the amplitude of the intracellular Ca(2+)-activated macroscopic current was dependent on time after patch rupture. Initial transient activation followed by a steady-increase reaching a plateau phase was observed. Biophysical analyses of the macroscopic current showed common properties with those from HEK293 cells stably transfected with human TRPM4b, with the exception of current time course and Ca(2+) sensitivity. The endogenous macroscopic current reached the plateau faster and required 61.9±3.5μM Ca(2+) to be half-maximally activated versus 84.2±1.5μM for the transfected current. The pharmacological properties, however, were similar in both conditions. One hundred μM of flufenamic acid and 9-phenanthrol strongly inhibited the endogenous current. Altogether, the data demonstrate the expression of endogenous TRMP4 channels in HEK293 cells. This observation should be taken into account when using this cell line to study TRPM4 or other types of Ca(2+)-activated channels.
Resumo:
BACKGROUND Enterococci are an important cause of central venous catheter (CVC)-associated bloodstream infections (CA-BSI). It is unclear whether CVC removal is necessary to successfully manage enterococcal CA-BSI. METHODS A 12-month retrospective cohort study of adults with enterococcal CA-BSI was conducted at a tertiary care hospital; clinical, microbiological and outcome data were collected. RESULTS A total of 111 patients had an enterococcal CA-BSI. The median age was 58.2 years (range 21 to 94 years). There were 45 (40.5%) infections caused by Entercoccus faecalis (among which 10 [22%] were vancomycin resistant), 61 (55%) by Enterococcus faecium (57 [93%] vancomycin resistant) and five (4.5%) by other Enterococcus species. Patients were treated with linezolid (n=51 [46%]), vancomycin (n=37 [33%]), daptomycin (n=11 [10%]), ampicillin (n=2 [2%]) or quinupristin/dalfopristin (n=2 [2%]); seven (n=6%) patients did not receive adequate enterococcal treatment. Additionally, 24 (22%) patients received adjunctive gentamicin treatment. The CVC was retained in 29 (26.1%) patients. Patients with removed CVCs showed lower rates of in-hospital mortality (15 [18.3%] versus 11 [37.9]; P=0.03), but similar rates of recurrent bacteremia (nine [11.0%] versus two (7.0%); P=0.7) and a similar post-BSI length of hospital stay (median days [range]) (11.1 [1.7 to 63.1 days] versus 9.3 [1.9 to 31.8 days]; P=0.3). Catheter retention was an independent predictor of mortality (OR 3.34 [95% CI 1.21 to 9.26]). CONCLUSIONS To the authors' knowledge, the present article describes the largest enterococcal CA-BSI series to date. Mortality was increased among patients who had their catheter retained. Additional prospective studies are necessary to determine the optimal management of enterococcal CA-BSI.