963 resultados para Barium fluoride
Resumo:
Reduced nitrate supply to the subarctic North Pacific (SNP) surface during the last ice age has been inferred from coupled changes in diatom-bound d15N (DB-d15N), bulk sedimentary d15N, and biogenic fluxes. However, the reliability of bulk sedimentary and DB-d15N has been questioned, and a previously reported d15N minimum during Heinrich Stadial 1 (HS1) has proven difficult to explain. In a core from the western SNP, we report the foraminifera-bound d15N (FB-d15N) in Neogloboquadrina pachyderma and Globigerina bulloides, comparing them with DB-d15N in the same core over the past 25 kyr. The d15N of all recorders is higher during the Last Glacial Maximum (LGM) than in the Holocene, indicating more complete nitrate consumption. N. pachyderma FB-d15N is similar to DB-d15N in the Holocene but 2.2 per mil higher during the LGM. This difference suggests a greater sensitivity of FB-d15N to changes in summertime nitrate drawdown and d15N rise, consistent with a lag of the foraminifera relative to diatoms in reaching their summertime production peak in this highly seasonal environment. Unlike DB-d15N, FB-d15N does not decrease from the LGM into HS1, which supports a previous suggestion that the HS1 DB-d15N minimum is due to contamination by sponge spicules. FB-d15N drops in the latter half of the Bølling/Allerød warm period and rises briefly in the Younger Dryas cold period, followed by a decline into the mid-Holocene. The FB-d15N records suggest that the coupling among cold climate, reduced nitrate supply, and more complete nitrate consumption that characterized the LGM also applied to the deglacial cold events.
Resumo:
This study examines the behavior of Ba isotope fractionation between witherite and fluid during mineral dissolution, precipitation and at chemical equilibrium. Experiments were performed in batch reactors at 25 oC in 10-2 M NaCl solution where the pH was adjusted by continuous bubbling of a water saturated gas phase of CO2 or atmospheric air. During witherite dissolution no Ba isotope fractionation was observed between solid and fluid. In contrast, during witherite precipitation, caused by a pH increase, a preferential uptake of the lighter 134Ba isotopomer in the solid phase was observed. In this case, the isotope fractionation factor αwitherite-fluid is calculated to be 0.99993 ± 0.00004 (or Δ137/134Bawitherite-fluid ≈ -0.07 ± 0.04 ‰, 2sd). The most interesting feature of this study, however, is that after the attainment of chemical equilibrium, the Ba isotope composition of the aqueous phase is progressively becoming lighter, indicating a continuous exchange of Ba2+ ions between witherite and fluid. Mass balance calculations indicate that the detachment of Ba from the solid is not only restricted to the outer surface layer of the solid, but affects several (~7 unit cells) subsurface layers of the crystal. This observation comes in excellent agreement with the concept of a dynamic system at chemical equilibrium in a mineral-fluid system, denoting that the time required for the achievement of isotopic equilibrium in the witherite-fluid system is longer compared to that observed for chemical equilibrium. Overall, these results indicate that the isotopic composition of Ba bearing carbonates in natural environments may be altered due to changes in fluid composition without a net dissolution/precipitation to be observed.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"April 1956."
Resumo:
See errate for page 1 at end of item.