1000 resultados para Bang energy
Resumo:
Report on the Iowa Office of Energy Independence for the year ended June 30, 2010
Resumo:
We study the spectrum and magnetic properties of double quantum dots in the lowest Landau level for different values of the hopping and Zeeman parameters by means of exact diagonalization techniques in systems of N=6 and 7 electrons and a filling factor close to 2. We compare our results with those obtained in double quantum layers and single quantum dots. The Kohn theorem is also discussed.
Resumo:
Pontryagin's maximum principle from optimal control theory is used to find the optimal allocation of energy between growth and reproduction when lifespan may be finite and the trade-off between growth and reproduction is linear. Analyses of the optimal allocation problem to date have generally yielded bang-bang solutions, i.e. determinate growth: life-histories in which growth is followed by reproduction, with no intermediate phase of simultaneous reproduction and growth. Here we show that an intermediate strategy (indeterminate growth) can be selected for if the rates of production and mortality either both increase or both decrease with increasing body size, this arises as a singular solution to the problem. Our conclusion is that indeterminate growth is optimal in more cases than was previously realized. The relevance of our results to natural situations is discussed.
Resumo:
The difficulties arising in the calculation of the nuclear curvature energy are analyzed in detail, especially with reference to relativistic models. It is underlined that the implicit dependence on curvature of the quantal wave functions is directly accessible only in a semiclassical framework. It is shown that also in the relativistic models quantal and semiclassical calculations of the curvature energy are in good agreement.
Resumo:
Semiclassical theories such as the Thomas-Fermi and Wigner-Kirkwood methods give a good description of the smooth average part of the total energy of a Fermi gas in some external potential when the chemical potential is varied. However, in systems with a fixed number of particles N, these methods overbind the actual average of the quantum energy as N is varied. We describe a theory that accounts for this effect. Numerical illustrations are discussed for fermions trapped in a harmonic oscillator potential and in a hard-wall cavity, and for self-consistent calculations of atomic nuclei. In the latter case, the influence of deformations on the average behavior of the energy is also considered.
Resumo:
We explore the deformation properties of the newly postulated Barcelona-Catania-Paris (BCP) energy density functional (EDF). The results obtained for three isotope chains of Mg, Dy, and Ra are compared to the available experimental data as well as to the results of the Gogny-D1S force. Results for the fission barrier of 240Pu are also discussed.
Resumo:
The density and excitation energy dependence of symmetry energy and symmetry free energy for finite nuclei are calculated microscopically in a microcanonical framework, taking into account thermal and expansion effects. A finite-range momentum and density-dependent two-body effective interaction is employed for this purpose. The role of mass, isospin, and equation of state (EOS) on these quantities is also investigated; our calculated results are in consonance with the available experimental data.
Resumo:
The influence of hole-hole (h-h) propagation in addition to the conventional particle-particle (p-p) propagation, on the energy per particle and the momentum distribution is investigated for the v2 central interaction which is derived from Reid¿s soft-core potential. The results are compared to Brueckner-Hartree-Fock calculations with a continuous choice for the single-particle (SP) spectrum. Calculation of the energy from a self-consistently determined SP spectrum leads to a lower saturation density. This result is not corroborated by calculating the energy from the hole spectral function, which is, however, not self-consistent. A generalization of previous calculations of the momentum distribution, based on a Goldstone diagram expansion, is introduced that allows the inclusion of h-h contributions to all orders. From this result an alternative calculation of the kinetic energy is obtained. In addition, a direct calculation of the potential energy is presented which is obtained from a solution of the ladder equation containing p-p and h-h propagation to all orders. These results can be considered as the contributions of selected Goldstone diagrams (including p-p and h-h terms on the same footing) to the kinetic and potential energy in which the SP energy is given by the quasiparticle energy. The results for the summation of Goldstone diagrams leads to a different momentum distribution than the one obtained from integrating the hole spectral function which in general gives less depletion of the Fermi sea. Various arguments, based partly on the results that are obtained, are put forward that a self-consistent determination of the spectral functions including the p-p and h-h ladder contributions (using a realistic interaction) will shed light on the question of nuclear saturation at a nonrelativistic level that is consistent with the observed depletion of SP orbitals in finite nuclei.
Resumo:
To cosmic rays incident near the horizon the Earth's atmosphere represents a beam dump with a slant depth reaching 36 000 g cm-2 at 90. The prompt decay of a heavy quark produced by very high energy cosmic ray showers will leave an unmistakable signature in this dump. We translate the failure of experiments to detect such a signal into an upper limit on the heavy quark hadroproduction cross section in the energy region beyond existing accelerators. Our results disfavor any rapid growth of the cross section or the gluon structure function beyond conservative estimates based on perturbative QCD.
Resumo:
Obesity results from chronic energy surplus and excess lipid storage in white adipose tissue (WAT). In contrast, brown adipose tissue (BAT) efficiently burns lipids through adaptive thermogenesis. Studying mouse models, we show that cyclooxygenase (COX)-2, a rate-limiting enzyme in prostaglandin (PG) synthesis, is a downstream effector of beta-adrenergic signaling in WAT and is required for the induction of BAT in WAT depots. PG shifted the differentiation of defined mesenchymal progenitors toward a brown adipocyte phenotype. Overexpression of COX-2 in WAT induced de novo BAT recruitment in WAT, increased systemic energy expenditure, and protected mice against high-fat diet-induced obesity. Thus, COX-2 appears integral to de novo BAT recruitment, which suggests that the PG pathway regulates systemic energy homeostasis.