937 resultados para Bacterial Cellulose
Resumo:
Senior thesis written for Oceanography 445
Resumo:
In the present study, a novel enzyme-based methodology for grafting Polyhydroxyalkanoates (PHAs) onto the ethyl cellulose (EC) as a backbone polymer was developed. Laccase assisted copolymerization was carried out under mild and eco-friendly reaction conditions. The resulting homogeneous composite membranes were characterized by Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Atomic Force Microscopy (AFM). The FTIR spectra of pure PHAs and PHAs containing graft composites (PHAs-g-EC) showed their strong characteristic bands at 1721 cm1, 1651 cm-1 and 1603 cm-1 respectively. Other accompanying bands in the range of 900-1300 cm-1 correspond to C=O vibration and C-O-C bond stretching, which could be contributed from PHAs and EC, respectively. The high intensity of the 3358 cm-1 band in the graft composite may have corresponded to the degradation of the carboxylic group from PHAs and also showed an increase of hydrogen-bonded groups at that distinct band region. The morphology was examined by SEM, which showed the well dispersed PHAs crystals in the backbone polymer of EC. XRD pattern for PHAs showed distinct peaks at 2-Theta values of 28o, 32o, 34o, 39o, 46o, 57o, 64o, 78o and 84o that represent the crystalline nature of PHAs. In comparison with those of neat PHAs, the degree of crystallinity for PHAs-g-EC decreased and this reduction is mainly because of the new cross-linking of PHAs within the EC backbone that changes the morphology and destroys the crystallites. Improved mechanical properties were observed for the PHAs-g-EC as compared to the individual components due to the impregnation of EC as reinforcement into the PHAs matrix. Improved mechanical strength enhanced thermal properties, along with low crystallinity of the present PHAs-g-EC suggesting its potential for various industrial and bio-medical applications.
Resumo:
Fitness centres are special places where conditions for microbiological proliferation should be considered. Moisture due to human perspiration and water condensation as a result of human physical activities are prevalent in this type of buildings. Exposure to microbial contaminants is clinically associated with respiratory disorders and people who work out in polluted environments would be susceptible to contaminants. This work studied the indoor air contamination in three gymnasiums in Lisbon. The sampling was performed at two periods: at the opening (morning) and closing (night) of the three gymnasiums. The airborne bacterial and fungal populations were sampled by impaction directly onto Tryptic Soy Agar (for bacteria) and Malt Extract Agar (for fungi) plates, using a Merck MAS-100 air sampler. Higher bacterial concentrations were found at night as compared to the morning but the same behaviour was not found for fungal concentrations. Gram-negative catalase positive cocci were the dominant bacteria in indoor air samples of the studied gymnasiums. In this study, 21 genera/species of fungal colonies were identified. Chrysosporium sp., Chrysonilia sp., Neoscytalidium hialinum, Sepedonium sp. and Penicillium sp. were the most prevalent species identified in the morning, while Cladosporium sp., Penicillium sp., Chrysosporium sp., Acremonium sp. and Chrysonilia sp. were more prevalent at night. A well-designed sanitation and maintenance program for gymnasiums is needed to ensure healthier space for indoor physical activity.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology by Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica, Instituto Gulbenkian de Ciência.
Resumo:
Using low cost portable devices that enable a single analytical step for screening environmental contaminants is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes that were to be disposed of and by choosing as sensory element a low cost material offering specific response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being dangerous toxins produced by cyanobacteria released into water bodies. The sensory element was a plastic antibody designed by surface imprinting with carefully selected monomers to ensure a specific response. These were designed on the wall of carbon nanotubes, taking advantage of their exceptional electrical properties. The stereochemical ability of the sensory material to detect MCs was checked by preparing blank materials where the imprinting stage was made without the template molecule. The novel sensory material for MCs was introduced in a polymeric matrix and evaluated against potentiometric measurements. Nernstian response was observed from 7.24 × 10−10 to 1.28 × 10−9 M in buffer solution (10 mM HEPES, 150 mM NaCl, pH 6.6), with average slopes of −62 mVdecade−1 and detection capabilities below 1 nM. The blank materials were unable to provide a linear response against log(concentration), showing only a slight potential change towards more positive potentials with increasing concentrations (while that ofthe plastic antibodies moved to more negative values), with a maximum rate of +33 mVdecade−1. The sensors presented good selectivity towards sulphate, iron and ammonium ions, and also chloroform and tetrachloroethylene (TCE) and fast response (<20 s). This concept was successfully tested on the analysis of spiked environmental water samples. The sensors were further applied onto recycled chips, comprehending one site for the reference electrode and two sites for different selective membranes, in a biparametric approach for “in situ” analysis.
Resumo:
Biochemistry, 2004, 43 (46), pp 14566–14576 DOI: 10.1021/bi0485833
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology.
Resumo:
Dissertation presented in partial fulfilment of the Requirements for the Degree of Master in Biotechnology
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology, Microbial Biology
Resumo:
Sporulation in Bacillus subtilis culminates with the formation of a dormant endospore. The endospore (or spore) is one of the most resilient cell types known and can remain viable in the environment for extended periods of time. Contributing to the spore’s resistance and its ability to interact with and monitor its immediate environment is the coat, the outermost layer of B. subtilis spores. The coat is composed by over 70 different proteins, which are produced at different stages in sporulation and orderly assembled around the developing spore.(...)
Resumo:
Probing micro-/nano-sized surface conformations, which are ubiquitous in biological systems, by using liquid crystal droplets, which change their ordering and optical appearance in response to the presence of more than ten times smaller cellulose based micro/nano fibers, might find new uses in a range of biological environments and sensors. Previous studies indicate that electrospun micro/nano cellulosic fibers produced from liquid crystalline solutions could present a twisted form [1]. In this work, we study the structures of nematic liquid crystal droplets threaded by cellulose fibers prepared from liquid crystalline and isotropic solutions as well as droplets pierced by spider-made fibers [2]. Planar anchoring at the fibers and planar and homeotropic at the drop surfaces allowed probing cellulose fibers different helical structures as well as aligned filaments.
Resumo:
Salmonella enterica serovars are Gram-negative facultative intracellular bacterial pathogens that infect a wide variety of animals. Salmonella infections are common in humans, causing usually typhoid fever and gastrointestinal diseases. Salmonella enterica serovar Typhimurium (S. Typhimurium), which is a leading cause of human gastroenteritis, has been extensively used to study the molecular pathogenesis of Salmonella, because of the availability of sophisticated genetic tools, and of suitable animal and tissue culture models mimicking different aspects of Salmonella infections.(...)