926 resultados para Backtrack programming.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed parallel execution systems speed up applications by splitting tasks into processes whose execution is assigned to different receiving nodes in a high-bandwidth network. On the distributing side, a fundamental problem is grouping and scheduling such tasks such that each one involves sufñcient computational cost when compared to the task creation and communication costs and other such practical overheads. On the receiving side, an important issue is to have some assurance of the correctness and characteristics of the code received and also of the kind of load the particular task is going to pose, which can be specified by means of certificates. In this paper we present in a tutorial way a number of general solutions to these problems, and illustrate them through their implementation in the Ciao multi-paradigm language and program development environment. This system includes facilities for parallel and distributed execution, an assertion language for specifying complex programs properties (including safety and resource-related properties), and compile-time and run-time tools for performing automated parallelization and resource control, as well as certification of programs with resource consumption assurances and efñcient checking of such certificates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The agent programming landscape has been revealed as a natural framework for developing “intelligence” in AI. This can be seen from the extensive use of the agent concept in presenting (and developing) AI systems, the proliferation of agent theories, and the evolution of concepts such as agent societies (social intelligence) and coordination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global data-flow analysis of (constraint) logic programs, which is generally based on abstract interpretation [7], is reaching a comparatively high level of maturity. A natural question is whether it is time for its routine incorporation in standard compilers, something which, beyond a few experimental systems, has not happened to date. Such incorporation arguably makes good sense only if: • the range of applications of global analysis is large enough to justify the additional complication in the compiler, and • global analysis technology can deal with all the features of "practical" languages (e.g., the ISO-Prolog built-ins) and "scales up" for large programs. We present a tutorial overview of a number of concepts and techniques directly related to the issues above, with special emphasis on the first one. In particular, we concéntrate on novel uses of global analysis during program development and debugging, rather than on the more traditional application área of program optimization. The idea of using abstract interpretation for validation and diagnosis has been studied in the context of imperative programming [2] and also of logic programming. The latter work includes issues such as using approximations to reduce the burden posed on programmers by declarative debuggers [6, 3] and automatically generating and checking assertions [4, 5] (which includes the more traditional type checking of strongly typed languages, such as Gódel or Mercury [1, 8, 9]) We also review some solutions for scalability including modular analysis, incremental analysis, and widening. Finally, we discuss solutions for dealing with meta-predicates, side-effects, delay declarations, constraints, dynamic predicates, and other such features which may appear in practical languages. In the discussion we will draw both from the literature and from our experience and that of others in the development and use of the CIAO system analyzer. In order to emphasize the practical aspects of the solutions discussed, the presentation of several concepts will be illustrated by examples run on the CIAO system, which makes extensive use of global analysis and assertions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irregular computations pose some of the most interesting and challenging problems in automatic parallelization. Irregularity appears in certain kinds of numerical problems and is pervasive in symbolic applications. Such computations often use dynamic data structures which make heavy use of pointers. This complicates all the steps of a parallelizing compiler, from independence detection to task partitioning and placement. In the past decade there has been significant progress in the development of parallelizing compilers for logic programming and, more recently, constraint programming. The typical applications of these paradigms frequently involve irregular computations, which arguably makes the techniques used in these compilers potentially interesting. In this paper we introduce in a tutorial way some of the problems faced by parallelizing compilers for logic and constraint programs. These include the need for inter-procedural pointer aliasing analysis for independence detection and having to manage speculative and irregular computations through task granularity control and dynamic task allocation. We also provide pointers to some of the progress made in these áreas. In the associated talk we demónstrate representatives of several generations of these parallelizing compilers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the design and implementation of visual paradigms for observing the execution of constraint logic programs, aiming at debugging, tuning and optimization, and teaching. We focus on the display of data in CLP executions, where representation for constrained variables and for the constrains themselves are seeked. Two tools, VIFID and TRIFID, exemplifying the devised depictions, have been implemented, and are used to showcase the usefulness of the visualizations developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CIAO is an advanced programming environment supporting Logic and Constraint programming. It offers a simple concurrent kernel on top of which declarative and non-declarative extensions are added via librarles. Librarles are available for supporting the ISOProlog standard, several constraint domains, functional and higher order programming, concurrent and distributed programming, internet programming, and others. The source language allows declaring properties of predicates via assertions, including types and modes. Such properties are checked at compile-time or at run-time. The compiler and system architecture are designed to natively support modular global analysis, with the two objectives of proving properties in assertions and performing program optimizations, including transparently exploiting parallelism in programs. The purpose of this paper is to report on recent progress made in the context of the CIAO system, with special emphasis on the capabilities of the compiler, the techniques used for supporting such capabilities, and the results in the áreas of program analysis and transformation already obtained with the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents some brief considerations on the role of Computational Logic in the construction of Artificial Intelligence systems and in programming in general. It does not address how the many problems in AI can be solved but, rather more modestly, tries to point out some advantages of Computational Logic as a tool for the AI scientist in his quest. It addresses the interaction between declarative and procedural views of programs (deduction and action), the impact of the intrinsic limitations of logic, the relationship with other apparently competing computational paradigms, and finally discusses implementation-related issues, such as the efficiency of current implementations and their capability for efficiently exploiting existing and future sequential and parallel hardware. The purpose of the discussion is in no way to present Computational Logic as the unique overall vehicle for the development of intelligent systems (in the firm belief that such a panacea is yet to be found) but rather to stress its strengths in providing reasonable solutions to several aspects of the task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe lpdoc, a tool which generates documentation manuals automatically from one or more logic program source files, written in ISO-Prolog, Ciao, and other (C)LP languages. It is particularly useful for documenting library modules, for which it automatically generates a rich description of the module interface. However, it can also be used quite successfully to document full applications. The documentation can be generated in many formats including t e x i n f o, dvi, ps, pdf, inf o, html/css, Unix nrof f/man, Windows help, etc., and can include bibliographic citations and images, lpdoc can also genérate "man" pages (Unix man page format), nicely formatted plain ascii "readme" files, installation scripts useful when the manuals are included in software distributions, brief descriptions in html/css or inf o formats suitable for inclusión in on-line Índices of manuals, and even complete WWW and inf o sites containing on-line catalogs of documents and software distributions. A fundamental advantage of using lpdoc is that it helps maintaining a true correspondence between the program and its documentation, and also identifying precisely to what versión of the program a given printed manual corresponds. The quality of the documentation generated can be greatly enhanced by including within the program text assertions (declarations with types, modes, etc. ...) for the predicates in the program, and machine-readable comments. These assertions and comments are written using the Ciao system assertion language. A simple compatibility library allows conventional (C)LP systems to ignore these assertions and comments and treat normally programs documented in this way. The lpdoc manual, all other Ciao system manuals, and most of this paper, are generated by lpdoc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss from a practical point of view a number of issues involved in writing Internet and WWW applications using LP/CLP systems. We describe Pd_l_oW, a public-domain Internet and WWW programming library for LP/CLP systems which we argüe significantly simplifies the process of writing such applications. Pd_l_oW provides facilities for generating HTML structured documents, producing HTML forms, writing form handlers, accessing and parsing WWW documents, and accessing code posted at HTTP addresses. We also describe the architecture of some application classes, using a high-level model of client-server interaction, active modules. We then propose an architecture for automatic LP/CLP code downloading for local execution, using generic browsers. Finally, we also provide an overview of related work on the topic. The PiLLoW library has been developed in the context of the &- Prolog and CIAO systems, but it has been adapted to a number of popular LP/CLP systems, supporting most of its functionality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss from a practical point of view a number of issues involved in writing Internet and WWW applications using LP/CLP systems. We describe PiLLoW, an Internet and WWW programming library for LP/CLP systems which we argüe significantly simplifies the process of writing such applications. PiLLoW provides facilities for generating HTML structured documents, producing HTML forms, writing form handlers, accessing and parsing WWW documents, and accessing code posted at HTTP addresses. We also describe the architecture of some application classes, using a high-level model of client-server interaction, active modules. Finally we describe an architecture for automatic LP/CLP code downloading for local execution, using generic browsers. The PiLLoW library has been developed in the context of the &-Prolog and CIAO systems, but it has been adapted to a number of popular LP/CLP systems, supporting most of its functionality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incorporating the possibility of attaching attributes to variables in a logic programming system has been shown to allow the addition of general constraint solving capabilities to it. This approach is very attractive in that by adding a few primitives any logic programming system can be turned into a generic constraint logic programming system in which constraint solving can be user defined, and at source level - an extreme example of the "glass box" approach. In this paper we propose a different and novel use for the concept of attributed variables: developing a generic parallel/concurrent (constraint) logic programming system, using the same "glass box" flavor. We argüe that a system which implements attributed variables and a few additional primitives can be easily customized at source level to implement many of the languages and execution models of parallelism and concurrency currently proposed, in both shared memory and distributed systems. We illustrate this through examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There have been several previous proposals for the integration of Object Oriented Programming features into Logic Programming, resulting in much support theory and several language proposals. However, none of these proposals seem to have made it into the mainstream. Perhaps one of the reasons for these is that the resulting languages depart too much from the standard logic programming languages to entice the average Prolog programmer. Another reason may be that most of what can be done with object-oriented programming can already be done in Prolog through the meta- and higher-order programming facilities that the language includes, albeit sometimes in a more cumbersome way. In light of this, in this paper we propose an alternative solution which is driven by two main objectives. The first one is to include only those characteristics of object-oriented programming which are cumbersome to implement in standard Prolog systems. The second one is to do this in such a way that there is minimum impact on the syntax and complexity of the language, i.e., to introduce the minimum number of new constructs, declarations, and concepts to be learned. Finally, we would like the implementation to be as straightforward as possible, ideally based on simple source to source expansions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this document is to serve as the printed material for the seminar "An Introductory Course on Constraint Logic Programming". The intended audience of this seminar are industrial programmers with a degree in Computer Science but little previous experience with constraint programming. The seminar itself has been field tested, prior to the writing of this document, with a group of the application programmers of Esprit project P23182, "VOCAL", aimed at developing an application in scheduling of field maintenance tasks in the context of an electric utility company. The contents of this paper follow essentially the flow of the seminar slides. However, there are some differences. These differences stem from our perception from the experience of teaching the seminar, that the technical aspects are the ones which need more attention and clearer explanations in the written version. Thus, this document includes more examples than those in the slides, more exercises (and the solutions to them), as well as four additional programming projects, with which we hope the reader will obtain a clearer view of the process of development and tuning of programs using CLP. On the other hand, several parts of the seminar have been taken out: those related with the account of fields and applications in which C(L)P is useful, and the enumerations of C(L)P tools available. We feel that the slides are clear enough, and that for more information on available tools, the interested reader will find more up-to-date information by browsing the Web or asking the vendors directly. More details in this direction will actually boil down to summarizing a user manual, which is not the aim of this document.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available