993 resultados para BON-33-BI.2
Resumo:
The objective of the present study was to determine the effects of hypoxia and temperature on the cardiovascular and respiratory systems and plasma glucose levels of the winter bullfrog Rana catesbeiana. Body temperature was maintained at 10, 15, 25 and 35oC for measurements of breathing frequency, heart rate, arterial blood pressure, metabolic rate, plasma glucose levels, blood gases and acid-base status. Reducing body temperature from 35 to 10oC decreased (P<0.001) heart rate (bpm) from 64.0 ± 3.1 (N = 5) to 12.5 ± 2.5 (N = 6) and blood pressure (mmHg) (P<0.05) from 41.9 ± 2.1 (N = 5) to 33.1 ± 2.1 (N = 6), whereas no significant changes were observed under hypoxia. Hypoxia-induced changes in breathing frequency and acid-base status were proportional to body temperature, being pronounced at 25oC, less so at 15oC, and absent at 10oC. Hypoxia at 35oC was lethal. Under normoxia, plasma glucose concentration (mg/dl) decreased (P<0.01) from 53.0 ± 3.4 (N = 6) to 35.9 ± 1.7 (N = 6) at body temperatures of 35 and 10oC, respectively. Hypoxia had no significant effect on plasma glucose concentration at 10 and 15oC, but at 25oC there was a significant increase under conditions of 3% inspired O2. The arterial PO2 and pH values were similar to those reported in previous studies on non-estivating Rana catesbeiana, but PaCO2 (37.5 ± 1.9 mmHg, N = 5) was 3-fold higher, indicating increased plasma bicarbonate levels. The estivating bullfrog may be exposed not only to low temperatures but also to hypoxia. These animals show temperature-dependent responses that may be beneficial since during low body temperatures the sensitivity of most physiological systems to hypoxia is reduced
Resumo:
The present study evaluated the correlation between the behavior of mice in the forced swimming test (FST) and in the elevated plus-maze (PM). The effect of the order of the experiments, i.e., the influence of the first test (FST or PM) on mouse behavior in the second test (PM or FST, respectively) was compared to handled animals (HAND). The execution of FST one week before the plus-maze (FST-PM, N = 10), in comparison to mice that were only handled (HAND-PM, N = 10) in week 1, decreased % open entries (HAND-PM: 33.6 ± 2.9; FST-PM: 20.0 ± 3.9; mean ± SEM; P<0.02) and % open time (HAND-PM: 18.9 ± 3.3; FST-PM: 9.0 ± 1.9; P<0.03), suggesting an anxiogenic effect. No significant effect was seen in the number of closed arm entries (FST-PM: 9.5 (7.0-11.0); HAND-PM: 10.0 (4.0-14.5), median (interquartile range); U = 46.5; P>0.10). A prior test in the plus-maze (PM-FST) did not change % immobility time in the FST when compared to the HAND-FST group (HAND-FST: 57.7 ± 3.9; PM-FST: 65.7 ± 3.2; mean ± SEM; P>0.10). Since these data suggest that there is an order effect, the correlation was evaluated separately with each test sequence: FST-PM (N = 20) and PM-FST (N = 18). There was no significant correlation between % immobility time in the FST and plus-maze indexes (% time and entries in open arms) in any test sequence (r: -0.07 to 0.18). These data suggest that mouse behavior in the elevated plus-maze is not related to behavior in the forced swimming test and that a forced swimming test before the plus-maze has an anxiogenic effect even after a one-week interval.
Resumo:
Physiological and pharmacological research undertaken on sloths during the past 30 years is comprehensively reviewed. This includes the numerous studies carried out upon the respiratory and cardiovascular systems, anesthesia, blood chemistry, neuromuscular responses, the brain and spinal cord, vision, sleeping and waking, water balance and kidney function and reproduction. Similarities and differences between the physiology of sloths and that of other mammals are discussed in detail.
Resumo:
The present paper describes important features of the immune response induced by the Cry1Ac protein from Bacillus thuringiensis in mice. The kinetics of induction of serum and mucosal antibodies showed an immediate production of anti-Cry1Ac IgM and IgG antibodies in serum after the first immunization with the protoxin by either the intraperitoneal or intragastric route. The antibody fraction in serum and intestinal fluids consisted mainly of IgG1. In addition, plasma cells producing anti-Cry1Ac IgG antibodies in Peyer's patches were observed using the solid-phase enzyme-linked immunospot (ELISPOT). Cry1Ac toxin administration induced a strong immune response in serum but in the small intestinal fluids only anti-Cry1Ac IgA antibodies were detected. The data obtained in the present study confirm that the Cry1Ac protoxin is a potent immunogen able to induce a specific immune response in the mucosal tissue, which has not been observed in response to most other proteins.
Resumo:
Juvenile hormone (JH) exerts pleiotropic functions during insect life cycles. The regulation of JH biosynthesis by neuropeptides and biogenic amines, as well as the transport of JH by specific binding proteins is now well understood. In contrast, comprehending its mode of action on target organs is still hampered by the difficulties in isolating specific receptors. In concert with ecdysteroids, JH orchestrates molting and metamorphosis, and its modulatory function in molting processes has gained it the attribute "status quo" hormone. Whereas the metamorphic role of JH appears to have been widely conserved, its role in reproduction has been subject to many modifications. In many species, JH stimulates vitellogenin synthesis and uptake. In mosquitoes, however, this function has been transferred to ecdysteroids, and JH primes the ecdysteroid response of developing follicles. As reproduction includes a variety of specific behaviors, including migration and diapause, JH has come to function as a master regulator in insect reproduction. The peak of pleiotropy was definitely reached in insects exhibiting facultative polymorphisms. In wing-dimorphic crickets, differential activation of JH esterase determines wing length. The evolution of sociality in Isoptera and Hymenoptera has also extensively relied on JH. In primitively social wasps and bumble bees, JH integrates dominance position with reproductive status. In highly social insects, such as the honey bee, JH has lost its gonadotropic role and now regulates division of labor in the worker caste. Its metamorphic role has been extensively explored in the morphological differentiation of queens and workers, and in the generation of worker polymorphism, such as observed in ants.
Resumo:
This review highlights the current advances in knowledge about the safety, efficacy, quality control, marketing and regulatory aspects of botanical medicines. Phytotherapeutic agents are standardized herbal preparations consisting of complex mixtures of one or more plants which contain as active ingredients plant parts or plant material in the crude or processed state. A marked growth in the worldwide phytotherapeutic market has occurred over the last 15 years. For the European and USA markets alone, this will reach about $7 billion and $5 billion per annum, respectively, in 1999, and has thus attracted the interest of most large pharmaceutical companies. Insufficient data exist for most plants to guarantee their quality, efficacy and safety. The idea that herbal drugs are safe and free from side effects is false. Plants contain hundreds of constituents and some of them are very toxic, such as the most cytotoxic anti-cancer plant-derived drugs, digitalis and the pyrrolizidine alkaloids, etc. However, the adverse effects of phytotherapeutic agents are less frequent compared with synthetic drugs, but well-controlled clinical trials have now confirmed that such effects really exist. Several regulatory models for herbal medicines are currently available including prescription drugs, over-the-counter substances, traditional medicines and dietary supplements. Harmonization and improvement in the processes of regulation is needed, and the general tendency is to perpetuate the German Commission E experience, which combines scientific studies and traditional knowledge (monographs). Finally, the trend in the domestication, production and biotechnological studies and genetic improvement of medicinal plants, instead of the use of plants harvested in the wild, will offer great advantages, since it will be possible to obtain uniform and high quality raw materials which are fundamental to the efficacy and safety of herbal drugs.
Resumo:
The presence of phaseolin (a vicilin-like 7S storage globulin) peptides in the seed coat of the legume Phaseolus lunatus L. (lima bean) was demonstrated by N-terminal amino acid sequencing. Utilizing an artificial seed system assay we showed that phaseolin, isolated from both cotyledon and testa tissues of P. lunatus, is detrimental to the nonhost bruchid Callosobruchus maculatus (F) (cowpea weevil) with ED50 of 1.7 and 3.5%, respectively. The level of phaseolin in the seed coat (16.7%) was found to be sufficient to deter larval development of this bruchid. The expression of a C. maculatus-detrimental protein in the testa of nonhost seeds suggests that the protein may have played a significant role in the evolutionary adaptation of bruchids to legume seeds.
Resumo:
R,S-sotalol, a ß-blocker drug with class III antiarrhythmic properties, is prescribed to patients with ventricular, atrial and supraventricular arrhythmias. A simple and sensitive method based on HPLC-fluorescence is described for the quantification of R,S-sotalol racemate in 500 µl of plasma. R,S-sotalol and its internal standard (atenolol) were eluted after 5.9 and 8.5 min, respectively, from a 4-micron C18 reverse-phase column using a mobile phase consisting of 80 mM KH2PO4, pH 4.6, and acetonitrile (95:5, v/v) at a flow rate of 0.5 ml/min with detection at lex = 235 nm and lem = 310 nm, respectively. This method, validated on the basis of R,S-sotalol measurements in spiked blank plasma, presented 20 ng/ml sensitivity, 20-10,000 ng/ml linearity, and 2.9 and 4.8% intra- and interassay precision, respectively. Plasma sotalol concentrations were determined by applying this method to investigate five high-risk patients with atrial fibrillation admitted to the Emergency Service of the Medical School Hospital, who received sotalol, 160 mg po, as loading dose. Blood samples were collected from a peripheral vein at zero, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0 and 24.0 h after drug administration. A two-compartment open model was applied. Data obtained, expressed as mean, were: CMAX = 1230 ng/ml, TMAX = 1.8 h, AUCT = 10645 ng h-1 ml-1, Kab = 1.23 h-1, a = 0.95 h-1, ß = 0.09 h-1, t(1/2)ß = 7.8 h, ClT/F = 3.94 ml min-1 kg-1, and Vd/F = 2.53 l/kg. A good systemic availability and a fast absorption were obtained. Drug distribution was reduced to the same extent in terms of total body clearance when patients and healthy volunteers were compared, and consequently elimination half-life remained unchanged. Thus, the method described in the present study is useful for therapeutic drug monitoring purposes, pharmacokinetic investigation and pharmacokinetic-pharmacodynamic sotalol studies in patients with tachyarrhythmias.
Resumo:
Hypocitraturia (HCit) is one of the most remarkable features of renal tubular acidosis, but an acidification defect is not seen in the majority of hypocitraturic patients, whose disease is denoted idiopathic hypocitraturia. In order to assess the integrity of urinary acidification mechanisms in hypocitraturic idiopathic calcium stone formers, we studied two groups of patients, hypocitraturic (HCit, N = 21, 39.5 ± 11.5 years, 11 females and 10 males) and normocitraturic (NCit, N = 23, 40.2 ± 11.7 years, 16 females and 7 males) subjects, during a short ammonium chloride loading test lasting 8 h. During the baseline period HCit patients showed significantly higher levels of titratable acid (TA). After the administration of ammonium chloride, mean urinary pH (3rd to 8th hour) and TA and ammonium excretion did not differ significantly between groups. Conversely, during the first hour mean urinary pH was lower and TA and ammonium excretion was higher in HCit. The enhanced TA excretion by HCit during the baseline period and during the first hour suggests that the phosphate buffer mechanism is activated. The earlier response in ammonium excretion by HCit further supports other evidence that acidification mechanisms react promptly. The present results suggest that in the course of lithiasic disease, hypocitraturia coexists with subtle changes in the excretion of hydrogen ions in basal situations.
Resumo:
To determine the influence of residual ß-cell function on retinopathy and microalbuminuria we measured basal C-peptide in 50 type 1 diabetic outpatients aged 24.96 ± 7.14 years, with a duration of diabetes of 9.1 ± 6.2 years. Forty-three patients (86%) with low C-peptide (<0.74 ng/ml) had longer duration of diabetes than 7 patients (14%) with high C-peptide (³0.74 ng/ml) (9 (2-34) vs 3 (1-10) years, P = 0.01) and a tendency to high glycated hemoglobin (HBA1) (8.8 (6-17.9) vs 7.7 (6.9-8.7)%, P = 0.08). Nine patients (18%) had microalbuminuria (two out of three overnight urine samples with an albumin excretion rate (AER) ³20 and <200 µg/min) and 13 (26%) had background retinopathy. No association was found between low C-peptide, microalbuminuria and retinopathy and no difference in basal C-peptide was observed between microalbuminuric and normoalbuminuric patients (0.4 ± 0.5 vs 0.19 ± 0.22 ng/ml, P = 0.61) and between patients with or without retinopathy (0.4 ± 0.6 vs 0.2 ± 0.3 ng/ml, P = 0.43). Multiple regression analysis showed that duration of diabetes (r = 0.30, r2 = 0.09, P = 0.031) followed by HBA1 (r = 0.41, r2 = 0.17, P = 0.01) influenced basal C-peptide, and this duration of diabetes was the only variable affecting AER (r = 0.40, r2 = 0.16, P = 0.004). In our sample of type 1 diabetic patients residual ß-cell function was not associated with microalbuminuria or retinopathy.