879 resultados para B-cell
Resumo:
Objective: Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process.
Approach and Results: We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α–mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation.
Conclusions: Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α–mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.
Resumo:
Müllerian inhibiting substance (MIS), a member of the transforming growth factor-beta superfamily, induces regression of the Müllerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G(1) phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFkappaB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IkappaBalpha expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFkappaB signaling pathway was required for these processes. These results identify the NFkappaB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.
Resumo:
Mullerian inhibiting substance (MIS), a member of the transforming growth factor-β superfamily, induces regression of the Mullerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G1 phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFκB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IκBα expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFκB signaling pathway was required for these processes. These results identify the NFκB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.
Resumo:
Dissertação de mest., Ciências Biomédicas, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2010
Resumo:
B and T lymphocyte attenuator (BTLA) is a negative regulator of T cell activation, but its function in vivo is not well characterized. Here we show that mice deficient in full-length BTLA or its ligand, herpesvirus entry mediator, had increased number of memory CD8(+) T cells. The memory CD8(+) T cell phenotype resulted from a T cell-intrinsic perturbation of the CD8(+) T cell pool. Naive BTLA-deficient CD8(+) T cells were more efficient than wild-type cells at generating memory in a competitive antigen-specific system. This effect was independent of the initial expansion of the responding antigen-specific T cell population. In addition, BTLA negatively regulated antigen-independent homeostatic expansion of CD4(+) and CD8(+) T cells. These results emphasize two central functions of BTLA in limiting T cell activity in vivo.
Resumo:
Background In angioimmunoblastic T-cell lymphoma, symptoms linked to B-lymphocyte activation are common, and variable numbers of CD20(+) large B-blasts, often infected by Epstein-Barr virus, are found in tumor tissues. We postulated that the disruption of putative B-T interactions and/or depletion of the Epstein-Barr virus reservoir by an anti-CD20 monoclonal antibody (rituximab) could improve the clinical outcome produced by conventional chemotherapy. DESIGN AND METHODS: Twenty-five newly diagnosed patients were treated, in a phase II study, with eight cycles of rituximab + chemotherapy (R-CHOP21). Tumor infiltration, B-blasts and Epstein-Barr virus status in tumor tissue and peripheral blood were fully characterized at diagnosis and were correlated with clinical outcome. RESULTS: A complete response rate of 44% (95% CI, 24% to 65%) was observed. With a median follow-up of 24 months, the 2-year progression-free survival rate was 42% (95% CI, 22% to 61%) and overall survival rate was 62% (95% CI, 40% to 78%). The presence of Epstein-Barr virus DNA in peripheral blood mononuclear cells (14/21 patients) correlated with Epstein-Barr virus score in lymph nodes (P<0.004) and the detection of circulating tumor cells (P=0.0019). Despite peripheral Epstein-Barr virus clearance after treatment, the viral load at diagnosis (>100 copy/μg DNA) was associated with shorter progression-free survival (P=0.06). Conclusions We report here the results of the first clinical trial targeting both the neoplastic T cells and the microenvironment-associated CD20(+) B lymphocytes in angioimmunoblastic T-cell lymphoma, showing no clear benefit of adding rituximab to conventional chemotherapy. A strong relationship, not previously described, between circulating Epstein-Barr virus and circulating tumor cells is highlighted.
Resumo:
Presence of surface glycoprotein in Piptocephalis virginiana that recognizes the host glycoproteins band c, reported earlier from our laboratory, was detected by immunofluorescence microscopy. Germinated spores of P. virginiana treated with Mortierella pusilla cell wall protein extract, primary antibodies prepared against glycoproteins band c and FITC-goat anti-rabbit IgG conjugate showed fluorescence. This indicated that on the surfaces of the biotrophic mycoparasite P. virginiana , there might be a complementary molecule which recognizes the glycoproteins band c from M. pusilla. Immunobinding analysis identified a glycoprotein of Mr 100 kDa from the mycoparasite which binds with the host glycoproteins band c, separately as well as collectively. Purification of this glycoprotein was achieved by (i) 60% ammonium sulfate precipitation, (ii) followed by heat treatment, and (iii) Sephadex G-IOO gel filtration. The glycoprotein was isolated by preparative polyacrylamide gel electrophoresis by cutting and elution. The purity of the protein ·was ascertained by SDS-PAGE and Western blot analysis. Positive reaction to periodic acid-Schiff reagent revealed the glycoprotein nature of this 100 kDa protein. Mannose was identified as a major sugar component of this glycoprotein by using a BoehringerMannheim Glycan Differentiation Kit. Electrophoretically purified glycoprotein was used to raIse polyclonal antibody in rabbit. The specificity of the antibody was determined by dot-immunobinding test and western-blot analysis. Immunofluorescence mIcroscopy revealed surface localization of the protein on the germ tube of Piptocephalis virginiana. Fluorescence was also observed at the surfaceJ of the germinated spores and hyphae of the host, M. pusilla after treatment with complementary protein from P. virginiana, primary antibody prepared against the complementary protein and FITC-goat anti-rabbit IgG conjugate.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Ce manuscrit est une pré-publication d'un article paru dans Clinical Immunology 2012; 143(3): 246-255 url: http://www.journals.elsevier.com/clinical-immunology/
Resumo:
The suitability of the caco-2 cell line as a model for studying the long term impact of dietary fatty acids on intestinal lipid handling and chylomicron production was examined. Chronic supplementation of caco-2 cells with palmitic acid (PA) resulted in a lower triacylglycerol secretion than oleic acid (OA). This was coupled with a detrimental effect of PA, but not OA, on transepithelial electrical resistance (TER) measurements, suggesting a loss of structural integrity across the cell monolayer. Addition of OA reversed the adverse effects of PA and stearic acid on TER and increased the ability of cells to synthesise and accumulate lipid, but did not normalise the secretion of lipids by caco-2 cells. Increasing amounts of OA and decreasing amounts of PA in the incubation media markedly improved the ability of cells to synthesise apolipoprotein B and secrete lipids. Real time RT-PCR revealed a down regulation of genes involved in lipoprotein synthesis following PA than OA. Electron microscopy showed adverse effects of PA on cellular morphology consistent with immature enterocytes such as stunted microvilli and poor tight junction formation. In conclusion, previously reported differences in lipoprotein secretion by caco-2 cells supplemented with saturated fatty acids (SFA) and OA may partly reflect early cytotoxic effects of SFA on cellular integrity and function. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Upon searching for glucocorticoid-regulated cDNA sequences associated with the transformed to normal phenotypic reversion of C6/ST1 rat glioma cells, we identified Nrp/b (nuclear restrict protein in brain) as a novel rat gene. Here we report on the identification and functional characterization of the complete sequence encoding the rat NRP/B protein. The cloned cDNA presented a 1767 nucleotides open-reading frame encoding a 589 aminoacids residues sequence containing a BTB/POZ (broad complex Tramtrack bric-a-brac/Pox virus and zinc finger) domain in its N-terminal region and kelch motifs in its C-terminal region. Sequence analysis indicates that the rat Nrp/b displays a high level of identity with the equivalent gene orthologs from other organisms. Among rat tissues, Nrp/b expression is more pronounced in brain tissue. We show that overexpression of the Nrp/b cDNA in C6/ST1 cells suppresses anchorage independence in vitro and tumorigenicity in vivo, altering their malignant nature towards a more benign phenotype. Therefore, Nrp/b may be postulated as a novel tumor suppressorgene, with possible relevance for glioblastoma therapy. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)