891 resultados para Automatic forecasting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human intestinal parasites constitute a problem in most tropical countries, causing death or physical and mental disorders. Their diagnosis usually relies on the visual analysis of microscopy images, with error rates that may range from moderate to high. The problem has been addressed via computational image analysis, but only for a few species and images free of fecal impurities. In routine, fecal impurities are a real challenge for automatic image analysis. We have circumvented this problem by a method that can segment and classify, from bright field microscopy images with fecal impurities, the 15 most common species of protozoan cysts, helminth eggs, and larvae in Brazil. Our approach exploits ellipse matching and image foresting transform for image segmentation, multiple object descriptors and their optimum combination by genetic programming for object representation, and the optimum-path forest classifier for object recognition. The results indicate that our method is a promising approach toward the fully automation of the enteroparasitosis diagnosis. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, a methodology is proposed for automatically (and locally) obtaining the shape factor c for the Gaussian basis functions, for each support domain, in order to increase numerical precision and mainly to avoid matrix inversion impossibilities. The concept of calibration function is introduced, which is used for obtaining c. The methodology developed was applied for a 2-D numerical experiment, which results are compared to analytical solution. This comparison revels that the results associated to the developed methodology are very close to the analytical solution for the entire bandwidth of the excitation pulse. The proposed methodology is called in this work Local Shape Factor Calibration Method (LSFCM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O modelo OLAM tem como característica a vantagem de representar simultaneamente os fenômenos meteorológicos de escala global e regional através de um esquema de refinamento de grades. Durante o projeto REMAM, o modelo foi aplicado para alguns estudos de caso com objetivo de avaliar o desempenho do modelo na previsão numérica de tempo para a região leste da Amazônia. Estudos de caso foram feitos para os doze meses do ano de 2009. Os resultados do modelo para estes casos foram comparados com dados observados na região de estudo. A análise dos dados de precipitação mostrou que o modelo consegue representar a distribuição média da precipitação acumulada e os aspectos da sazonalidade da ocorrência dos eventos, mas não consegue prever individualmente a acumulação de precipitação local. No entanto, avaliação individual de alguns casos mostrou que o modelo OLAM conseguiu representar dinamicamente e prever, com alguns dias de antecedência, o desenvolvimento de fenômenos meteorológicos costeiros como as linhas de instabilidade, que são um dos mais importantes sistemas precipitantes da Amazônia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Box-Cox transformation is a technique mostly utilized to turn the probabilistic distribution of a time series data into approximately normal. And this helps statistical and neural models to perform more accurate forecastings. However, it introduces a bias when the reversion of the transformation is conducted with the predicted data. The statistical methods to perform a bias-free reversion require, necessarily, the assumption of Gaussianity of the transformed data distribution, which is a rare event in real-world time series. So, the aim of this study was to provide an effective method of removing the bias when the reversion of the Box-Cox transformation is executed. Thus, the developed method is based on a focused time lagged feedforward neural network, which does not require any assumption about the transformed data distribution. Therefore, to evaluate the performance of the proposed method, numerical simulations were conducted and the Mean Absolute Percentage Error, the Theil Inequality Index and the Signal-to-Noise ratio of 20-step-ahead forecasts of 40 time series were compared, and the results obtained indicate that the proposed reversion method is valid and justifies new studies. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a Computer Aided Diagnosis (CAD) system that automatically classifies microcalcifications detected on digital mammograms into one of the five types proposed by Michele Le Gal, a classification scheme that allows radiologists to determine whether a breast tumor is malignant or not without the need for surgeries. The developed system uses a combination of wavelets and Artificial Neural Networks (ANN) and is executed on an Altera DE2-115 Development Kit, a kit containing a Field-Programmable Gate Array (FPGA) that allows the system to be smaller, cheaper and more energy efficient. Results have shown that the system was able to correctly classify 96.67% of test samples, which can be used as a second opinion by radiologists in breast cancer early diagnosis. (C) 2013 The Authors. Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Image categorization by means of bag of visual words has received increasing attention by the image processing and vision communities in the last years. In these approaches, each image is represented by invariant points of interest which are mapped to a Hilbert Space representing a visual dictionary which aims at comprising the most discriminative features in a set of images. Notwithstanding, the main problem of such approaches is to find a compact and representative dictionary. Finding such representative dictionary automatically with no user intervention is an even more difficult task. In this paper, we propose a method to automatically find such dictionary by employing a recent developed graph-based clustering algorithm called Optimum-Path Forest, which does not make any assumption about the visual dictionary's size and is more efficient and effective than the state-of-the-art techniques used for dictionary generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Princeton WordNet (WN.Pr) lexical database has motivated efficient compilations of bulky relational lexicons since its inception in the 1980's. The EuroWordNet project, the first multilingual initiative built upon WN.Pr, opened up ways of building individual wordnets, and interrelating them by means of the so-called Inter-Lingual-Index, an unstructured list of the WN.Pr synsets. Other important initiative, relying on a slightly different method of building multilingual wordnets, is the MultiWordNet project, where the key strategy is building language specific wordnets keeping as much as possible of the semantic relations available in the WN.Pr. This paper, in particular, stresses that the additional advantage of using WN.Pr lexical database as a resource for building wordnets for other languages is to explore possibilities of implementing an automatic procedure to map the WN.Pr conceptual relations as hyponymy, co-hyponymy, troponymy, meronymy, cause, and entailment onto the lexical database of the wordnet under construction, a viable possibility, for those are language-independent relations that hold between lexicalized concepts, not between lexical units. Accordingly, combining methods from both initiatives, this paper presents the ongoing implementation of the WN.Br lexical database and the aforementioned automation procedure illustrated with a sample of the automatic encoding of the hyponymy and co-hyponymy relations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a research to evaluate the potential and the effects of use of annotated Paraconsistent logic in automatic indexing. This logic attempts to deal with contradictions, concerned with studying and developing inconsistency-tolerant systems of logic. This logic, being flexible and containing logical states that go beyond the dichotomies yes and no, permits to advance the hypothesis that the results of indexing could be better than those obtained by traditional methods. Interactions between different disciplines, as information retrieval, automatic indexing, information visualization, and nonclassical logics were considered in this research. From the methodological point of view, an algorithm for treatment of uncertainty and imprecision, developed under the Paraconsistent logic, was used to modify the values of the weights assigned to indexing terms of the text collections. The tests were performed on an information visualization system named Projection Explorer (PEx), created at Institute of Mathematics and Computer Science (ICMC - USP Sao Carlos), with available source code. PEx uses traditional vector space model to represent documents of a collection. The results were evaluated by criteria built in the information visualization system itself, and demonstrated measurable gains in the quality of the displays, confirming the hypothesis that the use of the para-analyser under the conditions of the experiment has the ability to generate more effective clusters of similar documents. This is a point that draws attention, since the constitution of more significant clusters can be used to enhance information indexing and retrieval. It can be argued that the adoption of non-dichotomous (non-exclusive) parameters provides new possibilities to relate similar information.