956 resultados para Auditory Alarms
Resumo:
Understanding brain reserve in preclinical stages of neurodegenerative disorders allows determination of which brain regions contribute to normal functioning despite accelerated neuronal loss. Besides the recruitment of additional regions, a reorganisation and shift of relevance between normally engaged regions are a suggested key mechanism. Thus, network analysis methods seem critical for investigation of changes in directed causal interactions between such candidate brain regions. To identify core compensatory regions, fifteen preclinical patients carrying the genetic mutation leading to Huntington's disease and twelve controls underwent fMRI scanning. They accomplished an auditory paced finger sequence tapping task, which challenged cognitive as well as executive aspects of motor functioning by varying speed and complexity of movements. To investigate causal interactions among brain regions a single Dynamic Causal Model (DCM) was constructed and fitted to the data from each subject. The DCM parameters were analysed using statistical methods to assess group differences in connectivity, and the relationship between connectivity patterns and predicted years to clinical onset was assessed in gene carriers. In preclinical patients, we found indications for neural reserve mechanisms predominantly driven by bilateral dorsal premotor cortex, which increasingly activated superior parietal cortices the closer individuals were to estimated clinical onset. This compensatory mechanism was restricted to complex movements characterised by high cognitive demand. Additionally, we identified task-induced connectivity changes in both groups of subjects towards pre- and caudal supplementary motor areas, which were linked to either faster or more complex task conditions. Interestingly, coupling of dorsal premotor cortex and supplementary motor area was more negative in controls compared to gene mutation carriers. Furthermore, changes in the connectivity pattern of gene carriers allowed prediction of the years to estimated disease onset in individuals. Our study characterises the connectivity pattern of core cortical regions maintaining motor function in relation to varying task demand. We identified connections of bilateral dorsal premotor cortex as critical for compensation as well as task-dependent recruitment of pre- and caudal supplementary motor area. The latter finding nicely mirrors a previously published general linear model-based analysis of the same data. Such knowledge about disease specific inter-regional effective connectivity may help identify foci for interventions based on transcranial magnetic stimulation designed to stimulate functioning and also to predict their impact on other regions in motor-associated networks.
Resumo:
In schizophrenia patients, glutathione dysregulation at the gene, protein and functional levels, leads to N-methyl-D-aspartate (NMDA) receptor hypofunction. These patients also exhibit deficits in auditory sensory processing that manifests as impaired mismatch negativity (MMN), which is an auditory evoked potential (AEP) component related to NMDA receptor function. N-acetyl-cysteine (NAC), a glutathione precursor, was administered to patients to determine whether increased levels of brain glutathione would improve MMN and by extension NMDA function. A randomized, double-blind, cross-over protocol was conducted, entailing the administration of NAC (2 g/day) for 60 days and then placebo for another 60 days (or vice versa). 128-channel AEPs were recorded during a frequency oddball discrimination task at protocol onset, at the point of cross-over, and at the end of the study. At the onset of the protocol, the MMN of patients was significantly impaired compared to sex- and age- matched healthy controls (p=0.003), without any evidence of concomitant P300 component deficits. Treatment with NAC significantly improved MMN generation compared with placebo (p=0.025) without any measurable effects on the P300 component. MMN improvement was observed in the absence of robust changes in assessments of clinical severity, though the latter was observed in a larger and more prolonged clinical study. This pattern suggests that MMN enhancement may precede changes to indices of clinical severity, highlighting the possible utility AEPs as a biomarker of treatment efficacy. The improvement of this functional marker may indicate an important pathway towards new therapeutic strategies that target glutathione dysregulation in schizophrenia.
Resumo:
Inner ear hair cells and supporting cells arise from common precursors and, in mammals, do not show phenotypic conversion. Here, we studied the role of the homeodomain transcription factor Prox1 in the inner ear sensory epithelia. Adenoviral-mediated Prox1 transduction into hair cells in explant cultures led to strong repression of Atoh1 and Gfi1, two transcription factors critical for hair cell differentiation and survival. Luciferase assays showed that Prox1 can repress transcriptional activity of Gfi1 independently of Atoh1. Prox1 transduction into cochlear outer hair cells resulted in degeneration of these cells, consistent with the known phenotype of Gfi1-deficient mice. These results together with the widespread expression of endogenous Prox1 within the population of inner ear supporting cells point to the role for Prox1 in antagonizing the hair cell phenotype in these non-sensory cells. Further, in vivo analyses of hair cells from Gfi1-deficient mice suggest that the cyclin-dependent kinase inhibitor p57(Kip2) mediates the differentiation- and survival-promoting functions of Gfi1. These data reveal novel gene interactions and show that these interactions regulate cellular differentiation within the inner ear sensory epithelia. The data point to the tight regulation of phenotypic characteristics of hair cells and supporting cells.
Resumo:
Report for the scientific sojourn carried out at the University Medical Center, Swiss, from 2010 to 2012. Abundant evidence suggests that negative emotional stimuli are prioritized in the perceptual systems, eliciting enhanced neural responses in early sensory regions as compared with neutral information. This facilitated detection is generally paralleled by larger neural responses in early sensory areas, relative to the processing of neutral information. In this sense, the amygdala and other limbic regions, such as the orbitofrontal cortex, may play a critical role by sending modulatory projections onto the sensory cortices via direct or indirect feedback.The present project aimed at investigating two important issues regarding these mechanisms of emotional attention, by means of functional magnetic resonance imaging. In Study I, we examined the modulatory effects of visual emotion signals on the processing of task-irrelevant visual, auditory, and somatosensory input, that is, the intramodal and crossmodal effects of emotional attention. We observed that brain responses to auditory and tactile stimulation were enhanced during the processing of visual emotional stimuli, as compared to neutral, in bilateral primary auditory and somatosensory cortices, respectively. However, brain responses to visual task-irrelevant stimulation were diminished in left primary and secondary visual cortices in the same conditions. The results also suggested the existence of a multimodal network associated with emotional attention, presumably involving mediofrontal, temporal and orbitofrontal regions Finally, Study II examined the different brain responses along the low-level visual pathways and limbic regions, as a function of the number of retinal spikes during visual emotional processing. The experiment used stimuli resulting from an algorithm that simulates how the visual system perceives a visual input after a given number of retinal spikes. The results validated the visual model in human subjects and suggested differential emotional responses in the amygdala and visual regions as a function of spike-levels. A list of publications resulting from work in the host laboratory is included in the report.
Resumo:
Report for the scientific sojourn carried out at the University Medical Center, Swiss, from 2010 to 2012. Abundant evidence suggests that negative emotional stimuli are prioritized in the perceptual systems, eliciting enhanced neural responses in early sensory regions as compared with neutral information. This facilitated detection is generally paralleled by larger neural responses in early sensory areas, relative to the processing of neutral information. In this sense, the amygdala and other limbic regions, such as the orbitofrontal cortex, may play a critical role by sending modulatory projections onto the sensory cortices via direct or indirect feedback.The present project aimed at investigating two important issues regarding these mechanisms of emotional attention, by means of functional magnetic resonance imaging. In Study I, we examined the modulatory effects of visual emotion signals on the processing of task-irrelevant visual, auditory, and somatosensory input, that is, the intramodal and crossmodal effects of emotional attention. We observed that brain responses to auditory and tactile stimulation were enhanced during the processing of visual emotional stimuli, as compared to neutral, in bilateral primary auditory and somatosensory cortices, respectively. However, brain responses to visual task-irrelevant stimulation were diminished in left primary and secondary visual cortices in the same conditions. The results also suggested the existence of a multimodal network associated with emotional attention, presumably involving mediofrontal, temporal and orbitofrontal regions Finally, Study II examined the different brain responses along the low-level visual pathways and limbic regions, as a function of the number of retinal spikes during visual emotional processing. The experiment used stimuli resulting from an algorithm that simulates how the visual system perceives a visual input after a given number of retinal spikes. The results validated the visual model in human subjects and suggested differential emotional responses in the amygdala and visual regions as a function of spike-levels. A list of publications resulting from work in the host laboratory is included in the report.
Resumo:
The inner ear is responsible for the perception of motion and sound in vertebrates. Its functional unit, the sensory patch, contains mechanosensory hair cells innervated by sensory neurons from the statoacoustic ganglion (SAG) that project to the corresponding nuclei in the brainstem. How hair cells develop at specific positions, and how otic neurons are sorted to specifically innervate each endorgan and to convey the extracted information to the hindbrain is not completely understood. In this work, we study the generation of macular sensory patches and investigate the role of Hedgehog (Hh) signaling in the production of their neurosensory elements. Using zebrafish transgenic lines to visualize the dynamics of hair cell and neuron production, we show that the development of the anterior and posterior maculae is asynchronic, suggesting they are independently regulated. Tracing experiments demonstrate the SAG is topologically organized in two different neuronal subpopulations, which are spatially segregated and innervate specifically each macula. Functional experiments identify the Hh pathway as crucial in coordinating the production of hair cells in the posterior macula, and the formation of its specific innervation. Finally, gene expression analyses suggest that Hh influences the balance between different SAG neuronal subpopulations. These results lead to a model in which Hh orients functionally the development of inner ear towards an auditory fate in all vertebrate species.
Resumo:
Critics of the U.S. proposal to the World Trade Organization (WTO) made in October 2005 are correct when they argue that adoption of the proposal would significantly reduce available support under the current farm program structure. Using historical prices and yields from 1980 to 2004, we estimate that loan rates would have to drop by 9 percent and target prices would have to drop by 10 percent in order to meet the proposed aggregate Amber Box and Blue Box limits. While this finding should cheer those who think that reform of U.S. farm programs is long overdue, it alarms those who want to maintain a strong safety net for U.S. agriculture. The dilemma of needing to reform farm programs while maintaining a strong safety net could be resolved by redesigning programs so that they target revenue rather than price. Building on a base of 70 percent Green Box income insurance, a program that provides a crop-specific revenue guarantee equal to 98 percent of the product of the current effective target price and expected county yield would fit into the proposed aggregate Amber and Blue Box limits. Payments would be triggered whenever the product of the season-average price and county average yield fell below this 98 percent revenue guarantee. Adding the proposed crop-specific constraints lowers the coverage level to 95 percent. Moving from programs that target price to ones that target revenue would eliminate the rationale for ad hoc disaster payments. Program payments would automatically arrive whenever significant crop losses or economic losses caused by low prices occurred. Also, much of the need for the complicated mechanism (the Standard Reinsurance Agreement) that transfers most risk of the U.S. crop insurance to the federal government would be eliminated because the federal government would directly assume the risk through farm programs. Changing the focus of federal farm programs from price targeting to revenue targeting would not be easy. Farmers have long relied on price supports and the knowledge that crop losses are often adequately covered by heavily subsidized crop insurance or by ad hoc disaster payments. Farmers and their leaders would only be willing to support a change to revenue targeting if they see that the current system is untenable in an era of tight federal budgets and WTO limits.
Resumo:
Machine learning and pattern recognition methods have been used to diagnose Alzheimer's disease (AD) and mild cognitive impairment (MCI) from individual MRI scans. Another application of such methods is to predict clinical scores from individual scans. Using relevance vector regression (RVR), we predicted individuals' performances on established tests from their MRI T1 weighted image in two independent data sets. From Mayo Clinic, 73 probable AD patients and 91 cognitively normal (CN) controls completed the Mini-Mental State Examination (MMSE), Dementia Rating Scale (DRS), and Auditory Verbal Learning Test (AVLT) within 3months of their scan. Baseline MRI's from the Alzheimer's disease Neuroimaging Initiative (ADNI) comprised the other data set; 113 AD, 351 MCI, and 122 CN subjects completed the MMSE and Alzheimer's Disease Assessment Scale-Cognitive subtest (ADAS-cog) and 39 AD, 92 MCI, and 32 CN ADNI subjects completed MMSE, ADAS-cog, and AVLT. Predicted and actual clinical scores were highly correlated for the MMSE, DRS, and ADAS-cog tests (P<0.0001). Training with one data set and testing with another demonstrated stability between data sets. DRS, MMSE, and ADAS-Cog correlated better than AVLT with whole brain grey matter changes associated with AD. This result underscores their utility for screening and tracking disease. RVR offers a novel way to measure interactions between structural changes and neuropsychological tests beyond that of univariate methods. In clinical practice, we envision using RVR to aid in diagnosis and predict clinical outcome.
Resumo:
Multisensory stimuli can improve performance, facilitating RTs on sensorimotor tasks. This benefit is referred to as the redundant signals effect (RSE) and can exceed predictions on the basis of probability summation, indicative of integrative processes. Although an RSE exceeding probability summation has been repeatedly observed in humans and nonprimate animals, there are scant and inconsistent data from nonhuman primates performing similar protocols. Rather, existing paradigms have instead focused on saccadic eye movements. Moreover, the extant results in monkeys leave unresolved how stimulus synchronicity and intensity impact performance. Two trained monkeys performed a simple detection task involving arm movements to auditory, visual, or synchronous auditory-visual multisensory pairs. RSEs in excess of predictions on the basis of probability summation were observed and thus forcibly follow from neural response interactions. Parametric variation of auditory stimulus intensity revealed that in both animals, RT facilitation was limited to situations where the auditory stimulus intensity was below or up to 20 dB above perceptual threshold, despite the visual stimulus always being suprathreshold. No RT facilitation or even behavioral costs were obtained with auditory intensities 30-40 dB above threshold. The present study demonstrates the feasibility and the suitability of behaving monkeys for investigating links between psychophysical and neurophysiologic instantiations of multisensory interactions.
Resumo:
ABSTRACT This thesis is composed of two main parts. The first addressed the question of whether the auditory and somatosensory systems, like their visual counterpart, comprise parallel functional pathways for processing identity and spatial attributes (so-called `what' and `where' pathways, respectively). The second part examined the independence of control processes mediating task switching across 'what' and `where' pathways in the auditory and visual modalities. Concerning the first part, electrical neuroimaging of event-related potentials identified the spatio-temporal mechanisms subserving auditory (see Appendix, Study n°1) and vibrotactile (see Appendix, Study n°2) processing during two types of blocks of trials. `What' blocks varied stimuli in their frequency independently of their location.. `Where' blocks varied the same stimuli in their location independently of their frequency. Concerning the second part (see Appendix, Study n°3), a psychophysical task-switching paradigm was used to investigate the hypothesis that the efficacy of control processes depends on the extent of overlap between the neural circuitry mediating the different tasks at hand, such that more effective task preparation (and by extension smaller switch costs) is achieved when the anatomical/functional overlap of this circuitry is small. Performance costs associated with switching tasks and/or switching sensory modalities were measured. Tasks required the analysis of either the identity or spatial location of environmental objects (`what' and `where' tasks, respectively) that were presented either visually or acoustically on any given trial. Pretrial cues informed participants of the upcoming task, but not of the sensory modality. - In the audio-visual domain, the results showed that switch costs between tasks were significantly smaller when the sensory modality of the task switched versus when it repeated. In addition, switch costs between the senses were correlated only when the sensory modality of the task repeated across trials and not when it switched. The collective evidence not only supports the independence of control processes mediating task switching and modality switching, but also the hypothesis that switch costs reflect competitive interterence between neural circuits that in turn can be diminished when these neural circuits are distinct. - In the auditory and somatosensory domains, the findings show that a segregation of location vs. recognition information is observed across sensory systems and that these happen around 100ms for both sensory modalities. - Also, our results show that functionally specialized pathways for audition and somatosensation involve largely overlapping brain regions, i.e. posterior superior and middle temporal cortices and inferior parietal areas. Both these properties (synchrony of differential processing and overlapping brain regions) probably optimize the relationships across sensory modalities. - Therefore, these results may be indicative of a computationally advantageous organization for processing spatial anal identity information.
Resumo:
Action-related sounds are known to increase the excitability of motoneurones within the primary motor cortex (M1), but the role of this auditory input remains unclear. We investigated repetition priming-induced plasticity, which is characteristic of semantic representations, in M1 by applying transcranial magnetic stimulation pulses to the hand area. Motor evoked potentials (MEPs) were larger while subjects were listening to sounds related versus unrelated to manual actions. Repeated exposure to the same manual-action-related sound yielded a significant decrease in MEPs when right, hand area was stimulated; no repetition effect was observed for manual-action-unrelated sounds. The shared repetition priming characteristics suggest that auditory input to the right primary motor cortex is part of auditory semantic representations.
Resumo:
Evidence of multisensory interactions within low-level cortices and at early post-stimulus latencies has prompted a paradigm shift in conceptualizations of sensory organization. However, the mechanisms of these interactions and their link to behavior remain largely unknown. One behaviorally salient stimulus is a rapidly approaching (looming) object, which can indicate potential threats. Based on findings from humans and nonhuman primates suggesting there to be selective multisensory (auditory-visual) integration of looming signals, we tested whether looming sounds would selectively modulate the excitability of visual cortex. We combined transcranial magnetic stimulation (TMS) over the occipital pole and psychophysics for "neurometric" and psychometric assays of changes in low-level visual cortex excitability (i.e., phosphene induction) and perception, respectively. Across three experiments we show that structured looming sounds considerably enhance visual cortex excitability relative to other sound categories and white-noise controls. The time course of this effect showed that modulation of visual cortex excitability started to differ between looming and stationary sounds for sound portions of very short duration (80 ms) that were significantly below (by 35 ms) perceptual discrimination threshold. Visual perceptions are thus rapidly and efficiently boosted by sounds through early, preperceptual and stimulus-selective modulation of neuronal excitability within low-level visual cortex.
Resumo:
Dorsal and ventral pathways for syntacto-semantic speech processing in the left hemisphere are represented in the dual-stream model of auditory processing. Here we report new findings for the right dorsal and ventral temporo-frontal pathway during processing of affectively intonated speech (i.e. affective prosody) in humans, together with several left hemispheric structural connections, partly resembling those for syntacto-semantic speech processing. We investigated white matter fiber connectivity between regions responding to affective prosody in several subregions of the bilateral superior temporal cortex (secondary and higher-level auditory cortex) and of the inferior frontal cortex (anterior and posterior inferior frontal gyrus). The fiber connectivity was investigated by using probabilistic diffusion tensor based tractography. The results underscore several so far underestimated auditory pathway connections, especially for the processing of affective prosody, such as a right ventral auditory pathway. The results also suggest the existence of a dual-stream processing in the right hemisphere, and a general predominance of the dorsal pathways in both hemispheres underlying the neural processing of affective prosody in an extended temporo-frontal network.
Resumo:
Multisensory experiences enhance perceptions and facilitate memory retrieval processes, even when only unisensory information is available for accessing such memories. Using fMRI, we identified human brain regions involved in discriminating visual stimuli according to past multisensory vs. unisensory experiences. Subjects performed a completely orthogonal task, discriminating repeated from initial image presentations intermixed within a continuous recognition task. Half of initial presentations were multisensory, and all repetitions were exclusively visual. Despite only single-trial exposures to initial image presentations, accuracy in indicating image repetitions was significantly improved by past auditory-visual multisensory experiences over images only encountered visually. Similarly, regions within the lateral-occipital complex-areas typically associated with visual object recognition processes-were more active to visual stimuli with multisensory than unisensory pasts. Additional differential responses were observed in the anterior cingulate and frontal cortices. Multisensory experiences are registered by the brain even when of no immediate behavioral relevance and can be used to categorize memories. These data reveal the functional efficacy of multisensory processing.
Resumo:
Behavioral and brain responses to identical stimuli can vary with experimental and task parameters, including the context of stimulus presentation or attention. More surprisingly, computational models suggest that noise-related random fluctuations in brain responses to stimuli would alone be sufficient to engender perceptual differences between physically identical stimuli. In two experiments combining psychophysics and EEG in healthy humans, we investigated brain mechanisms whereby identical stimuli are (erroneously) perceived as different (higher vs lower in pitch or longer vs shorter in duration) in the absence of any change in the experimental context. Even though, as expected, participants' percepts to identical stimuli varied randomly, a classification algorithm based on a mixture of Gaussians model (GMM) showed that there was sufficient information in single-trial EEG to reliably predict participants' judgments of the stimulus dimension. By contrasting electrical neuroimaging analyses of auditory evoked potentials (AEPs) to the identical stimuli as a function of participants' percepts, we identified the precise timing and neural correlates (strength vs topographic modulations) as well as intracranial sources of these erroneous perceptions. In both experiments, AEP differences first occurred ∼100 ms after stimulus onset and were the result of topographic modulations following from changes in the configuration of active brain networks. Source estimations localized the origin of variations in perceived pitch of identical stimuli within right temporal and left frontal areas and of variations in perceived duration within right temporoparietal areas. We discuss our results in terms of providing neurophysiologic evidence for the contribution of random fluctuations in brain activity to conscious perception.