880 resultados para Attenuated Total Internal Reflectance Fourier Transform Infrared Spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to study the thermal behavior of geopolymers derived from kaolinite (clay). The geopolymers were characterized by various technics: Thermal analysis (DTA, TGA and dilatometer), X-ray diffractography (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Certain physical properties of the products were equally determined: linear shrinkage of curing, percentage of water absorption and compressive strength. The results obtained after drying and thermal treatment showed that the products preserved their initial forms, but showed variable colours based on the temperatures they were treated at. The products obtained at 90, 300 and 500 °C contained hydroxysodalite. The synthesis of geopolymers is not complete at 300 °C (presence of kaolinite in the material) but the products obtained are quite consolidated. The geopolymers obtained have weak values of linear shrinkage of curing (less than 0.6 %) and the compressive strength increases from room temperature (4.9 Mpa) up to 400 °C (8.9 MPa) then becomes constant between 400 and 500 °C. The combination of results demonstrates the efficiency of the temperature parameter during the synthesis of geopolymers based on kaolinite. // L’objet de ce travail est l’étude du comportement thermique des géopolymères à base d’une argile kaolinite. Les produits obtenus ont été caractérisés au moyen de plusieurs techniques : analyses thermiques (ATD, ATG et dilatométrie), microscopie électronique à balayage (MEB), analyse par diffraction de rayons X (DRX), analyse infrarouge par transformée de Fourier (IRTF). Certaines propriétés physiques des produits obtenus ont également été déterminées : retrait linéaire de cuisson, pourcentage d’absorption d’eau et résistance à la compression. Les résultats obtenus montrent qu’après le séchage et à la fin du traitement thermique, les éprouvettes des produits conservent leur forme initiale mais présentent une variation de couleur en fonction de la température de traitement. Les produits obtenus à 90, 300 et 500 °C contiennent de l’hydroxysodalite. La réaction de synthèse géopolymère n’est pas encore terminée au moins à 300 °C (présence de kaolinite dans le matériau) mais les produits obtenus sont assez consolidés. Les géopolymères obtenus présentent de faibles valeurs de retrait linéaire de cuisson (inférieure à 0,6 %) et une résistance à la compression qui augmente de la température ambiante (4,9 MPa) jusqu’à 400 °C (8,9 MPa) puis devient constante entre 400 et 500 °C. L’ensemble de ces résultats permet de mettre en exergue l’efficacité du paramètre « température » au cours de la synthèse des géopolymères à base de kaolinite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volcanic ashes are raw materials from geological deposits with a range of chemical compositions. When combined with suitable alkali activators they can be converted to geopolymers cement at ambient temperature. In this work we have investigated the possibility of use bauxite and oyster shells as mineral admixture in volcanic ashes, to enhance the properties of geopolymers synthesized. Different methods of analyses such as Fourier Transform Infrared spectroscopy (FTIR), X-ray diffractometry (XRD), and Scanning Electron Microscopy (SEM) were used to assess the variation of setting time, linear shrinkage and 28 days compressive strength of geopolymers paste. The bauxite and the oyster shells were characterized using inductively coupled plasma (ICP-AES), thermal analyses (DSC/ATG), FTIR and X-ray diffractometry. The results of these analyses has showed that bauxite and oyster shells are respectively source of Al2O3 and of CaO, and can compensate the deficiencies of these oxides in volcanic ashes. Adding mineral admixture dissolve slowly in high alkaline medium. Addition of about 20% of bauxite or 10% of oyster shells is seen to decrease the setting time respectively from 415 to 275 min and 195 min. Linear shrinkage decrease with percentage of bauxite or of oyster shells added. Efflorescence is reduced by adding 10% of bauxite. 28 days compressive strength of geopolymeric materials increase respectively for 4.77 and 7.52% for 10% of bauxite or 20% of oyster shells added. More than these percentage additive has a deleterious effect on compressive strength due to crystalized mineralogical phases of the admixture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two types of volcanic ashes referenced as ZD (volcanic ashes from Djoungo) and ZG (volcanic ashes from Galim) were collected from two Cameroonian localities. They were characterized (chemical and mineralogical compositions, amorphous phase content, particle size distribution and specific surface area) and used as raw materials for the synthesis of geopolymer cements at ambient temperature of laboratory (24 ± 3 °C). The synthesized products were characterized by determining their setting time, linear shrinkage and compressive strength, X-ray Diffraction, Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy. The mineralogical composition, the amorphous phase content, the particle size distribution, the specific surface area of the volcanic ashes as well as the mass ratio of the alkaline solution (sodium silicate / sodium hydroxide) were the main parameters which influenced the synthesis of geopolymers with interesting characteristics at ambient temperature (24 ± 3 °C). The volcanic ashes (ZD) whose mineralogical composition contained anhydrite, low amorphous phase content and low specific surface area led to long setting times. Moreover, its products swelled and presented cracks due to the formation of ettringite and these resulted in low compressive strengths (7 to 19 MPa). The volcanic ashes (ZG) containing high amounts of amorphous phase and high specific surface area led geopolymers with setting times between 490 and 180 minutes and compressive strength between 7 and 50 MPa at ambient temperature of laboratory. The properties of geopolymers were improved when elaborated with a mixture of volcanic ashes and metakaolin (ZD–MK and ZG–MK). For geopolymers obtained from ZD–MK, the setting time was between 500 and 160 minutes while it was between 220 and 125 minutes for geopolymers obtained from ZG–MK. The compressive strength greatly increased between 23 and 68 MPa and 39 and 64 MPa for geopolymers obtained from ZG –MK and ZD–MK respectively. A comparative study of the properties of mixtures of metakaolin–alumina and volcanic ash–alumina based geopolymers shows that metakaolin is a good source of Al2O3 and SiO2 and which highly reactive with alkaline solution and produces geopolymers with better characteristics compared to volcanic ash based–geopolymer. The properties of volcanic ash–based geopolymer were also improved when amorphous alumina was incorporated into the volcanic ash. This additive is used to compensate the deficiencies in Al2O3 content in the volcanic ash. Compare to when volcanic ash is used alone 20 to 40 % incorporation of this additive corresponded to increases of the compressive strength by 18.1 % for metakaolin-alumina based-geopolymers and by 32.4 % for volcanic ash-based geopolymers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work has investigated the possibility of use bauxite and oyster shell as mineral admixtures,to enhance the properties of metakaolin-based geopolymer cements. Raw materials(metakaolin, bauxite and oyster shell) were characterized in the first time by determination of their chemical and mineralogical compositions, particles size distribution, specific surface area, thermal analysis and then in the second time use to synthesized geopolymers. Different methods of analysis such as Fourier Transform Infrared spectroscopy(FTIR), X-Ray Diffractometry (XRD), and Scanning Electron Microscopy (SEM) were used to assess the variation of setting time, linear shrinkage and 28 days compressive strength of geopolymer pastes. The results of these analysis has showed that bauxite and oyster shells are source of Al2O3 and CaO respectively, and also contain crystalline phases. The geopolymers obtained by mixing metakaolin and bauxite have their setting time between 235 and 420min and their compressive strength between 40 and 57MPa ; for those obtained by mixing metakaolin and oyster shell the setting time is between 330 and 485min and compressive strength between 40 and 58MPa . The addition of a moderate amount (20% by mass) of bauxite or oyster shell led to improve the compressive strength of a metakaolin-based geopolymer of 43% (metakaolin-bauxite-based geopolymers) and 45% (metakaolin-oyster shell-based geopolymers) and decrease the linear shrinkage. More than 20% mineral additive has a deleterious effect on compressive strength and increase the setting time. Keywords: Metakaolin ; Bauxite ; Oyster shell ; synthesis ; Optimization; Geopolymer cements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein scaffolds that support molecular recognition have multiple applications in biotechnology. Thus, protein frames with robust structural cores but adaptable surface loops are in continued demand. Recently, notable progress has been made in the characterization of Ig domains of intracellular origin--in particular, modular components of the titin myofilament. These Ig belong to the I(intermediate)-type, are remarkably stable, highly soluble and undemanding to produce in the cytoplasm of Escherichia coli. Using the Z1 domain from titin as representative, we show that the I-Ig fold tolerates the drastic diversification of its CD loop, constituting an effective peptide display system. We examine the stability of CD-loop-grafted Z1-peptide chimeras using differential scanning fluorimetry, Fourier transform infrared spectroscopy and nuclear magnetic resonance and demonstrate that the introduction of bioreactive affinity binders in this position does not compromise the structural integrity of the domain. Further, the binding efficiency of the exogenous peptide sequences in Z1 is analyzed using pull-down assays and isothermal titration calorimetry. We show that an internally grafted, affinity FLAG tag is functional within the context of the fold, interacting with the anti-FLAG M2 antibody in solution and in affinity gel. Together, these data reveal the potential of the intracellular Ig scaffold for targeted functionalization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent increase in the amount of nanoparticles incorporated into commercial products is accompanied by a rising concern of the fate of these nanoparticles. Once released into the environment, it is inevitable that the nanoparticles will come into contact with the soil, introducing them to various routes of environmental contamination. One route that was explored in this research was the interaction between nanoparticles and clay minerals. In order to better define the interactions between clay minerals and positively charged nanoparticles, in situ atomic force microscopy (AFM) was utilized. In situ AFM experiments allowed interactions between clay minerals and positively charged nanoparticles to be observed in real time. The preliminary results demonstrated that in situ AFM was a reliable technique for studying the interactions between clay minerals and positively charged nanoparticles and showed that the nanoparticles affected the swelling (height) of the clay quasi-crystals upon exposure. The preliminary AFM data were complemented by batch study experiments which measured the absorbance of the nanoparticle filtrate after introduction to clay minerals in an effort to better determine the mobility of the positively charged nanoparticles in an environment with significant clay contribution. The results of the batch study indicated that the interactions between clay minerals and positively charged nanoparticles were size dependent and that the interactions of the different size nanoparticles with the clay may be occurring to different degrees. The degree to which the different size nanoparticles were interacting with the clay was further probed using FTIR (Fourier transform infrared) spectroscopy experiments. The results of these experiments showed that interactions between clay minerals and positively charged nanoparticles were size dependent as indicated by a change in the FTIR spectra of the nanoparticles upon introduction to clay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increasing importance of conserving natural resources and moving toward sustainable practices, the aging transportation infrastructure can benefit from these ideas by improving their existing recycling practices. When an asphalt pavement needs to be replaced, the existing pavement is removed and ground up. This ground material, known as reclaimed asphalt pavement (RAP), is then added into new asphalt roads. However, since RAP was exposed to years of ultraviolet degradation and environmental weathering, the material has aged and cannot be used as a direct substitute for aggregate and binder in new asphalt pavements. One material that holds potential for restoring the aged asphalt binder to a usable state is waste engine oil. This research aims to study the feasibility of using waste engine oil as a recycling agent to improve the recyclability of pavements containing RAP. Testing was conducted in three phases, asphalt binder testing, advanced asphalt binder testing, and laboratory mixture testing. Asphalt binder testing consisted of dynamic shear rheometer and rotational viscometer testing on both unaged and aged binders containing waste engine oil and reclaimed asphalt binder (RAB). Fourier Transform Infrared Spectroscopy (FTIR) testing was carried out to on the asphalt binders blended with RAB and waste engine oil compare the structural indices indicative of aging. Lastly, sample asphalt samples containing waste engine oil and RAP were subjected to rutting testing and tensile strength ratio testing. These tests lend evidence to support the claim that waste engine oil can be used as a rejuvenating agent to chemically restore asphalt pavements containing RAP. Waste engine oil can reduce the stiffness and improve the low temperature properties of asphalt binders blended with RAB. Waste engine oil can also soften asphalt pavements without having a detrimental effect on the moisture susceptibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase equilibria simulations were performed on naturally quenched basaltic glasses to determine crystallization conditions prior to eruption of magmas at the Mid-Atlantic Ridge (MAR) east of Ascension Island (7°11°S).The results indicate that midocean ridge basalt (MORB) magmas beneath different segments of the MAR have crystallized over a wide range of pressures (100-900MPa). However, each segment seems to have a specific crystallization history. Nearly isobaric crystallization conditions (100-300MPa) were obtained for the geochemically enriched MORB magmas of the central segments, whereas normal (N)-MORB magmas of the bounding segments are characterized by polybaric crystallization conditions (200-900MPa). In addition, our results demonstrate close to anhydrous crystallization conditions of N-MORBs, whereas geochemically enriched MORBs were successfully modeled in the presence of 0.4-1wt% H2O in the parental melts.These estimates are in agreement with direct (Fourier transform IR) measurements of H2O abundances in basaltic glasses and melt inclusions for selected samples. Water contents determined in the parental melts are in the range 0.04-0.09 and 0.30-0.55 wt% H2O for depleted and enriched MORBs, respectively. Our results are in general agreement (within ±200MPa) with previous approaches used to evaluate pressure estimates in MORB. However, the determination of pre-eruptive conditions of MORBs, including temperature and water content in addition to pressure, requires the improvement of magma crystallization models to simulate liquid lines of descent in the presence of small amounts of water. KEY WORDS: MORB; Mid-Atlantic Ridge; depth of crystallization; water abundances; phase equilibria calculations; cotectic crystallization; pressure estimates; polybaric fractionation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ontong Java Plateau in the western Pacific is anomalous compared to other oceanic large igneous provinces in that it appears to have never formed a large subaerial plateau. Paleoeruption depths (at 122 Ma) estimated from dissolved H2O and CO2 in submarine basaltic glass pillow rims vary from ~1100 m below sea level (mbsl) on the central part of the plateau to 2200-3000 mbsl on the northeastern edge. Our results suggest maximum initial uplift for the plateau of 2500-3600 m above the surrounding seafloor and 1500+/-400 m of postemplacement subsidence since 122 Ma. Our estimates of uplift and subsidence for the plateau are significantly less than predictions from thermal models of oceanic lithosphere, and thus our results are inconsistent with formation of the plateau by a high-temperature mantle plume. Two controversial possibilities to explain the anomalous uplift and subsidence are that the plateau (1) formed as a result of a giant bolide impact, or (2) formed from a mantle plume but has a lower crust of dense garnet granulite and/or eclogite; neither of these possibilities is fully consistent with all available geological, geophysical, and geochemical data. The origin of the largest magmatic event on Earth in the past 200 m.y. thus remains an enigma.