974 resultados para Assurance automobile


Relevância:

10.00% 10.00%

Publicador:

Resumo:

When classifying a signal, ideally we want our classifier to trigger a large response when it encounters a positive example and have little to no response for all other examples. Unfortunately in practice this does not occur with responses fluctuating, often causing false alarms. There exists a myriad of reasons why this is the case, most notably not incorporating the dynamics of the signal into the classification. In facial expression recognition, this has been highlighted as one major research question. In this paper we present a novel technique which incorporates the dynamics of the signal which can produce a strong response when the peak expression is found and essentially suppresses all other responses as much as possible. We conducted preliminary experiments on the extended Cohn-Kanade (CK+) database which shows its benefits. The ability to automatically and accurately recognize facial expressions of drivers is highly relevant to the automobile. For example, the early recognition of “surprise” could indicate that an accident is about to occur; and various safeguards could immediately be deployed to avoid or minimize injury and damage. In this paper, we conducted initial experiments on the extended Cohn-Kanade (CK+) database which shows its benefits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the feasibility of using structural modal strain energy as a parameter employed in correlation- based damage detection method for truss bridge structures. It is an extension of the damage detection method adopting multiple damage location assurance criterion. In this paper, the sensitivity of modal strain energy to damage obtained from the analytical model is incorporated into the correlation objective function. Firstly, the sensitivity matrix of modal strain energy to damage is conducted offline, and for an arbitrary damage case, the correlation coefficient (objective function) is calculated by multiplying the sensitivity matrix and damage vector. Then, a genetic algorithm is used to iteratively search the damage vector maximising the correlation between the corresponding modal strain energy change (hypothesised) and its counterpart in measurement. The proposed method is simulated and compared with the conventional methods, e.g. frequency-error method, coordinate modal assurance criterion and multiple damage location assurance criterion using mode shapes on a numerical truss bridge structure. The result demonstrates the modal strain energy correlation method is able to yield acceptable damage detection outcomes with less computing efforts, even in a noise contaminated condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: To develop clinical protocols for acquiring PET images, performing CT-PET registration and tumour volume definition based on the PET image data, for radiotherapy for lung cancer patients and then to test these protocols with respect to levels of accuracy and reproducibility. Method: A phantom-based quality assurance study of the processes associated with using registered CT and PET scans for tumour volume definition was conducted to: (1) investigate image acquisition and manipulation techniques for registering and contouring CT and PET images in a radiotherapy treatment planning system, and (2) determine technology-based errors in the registration and contouring processes. The outcomes of the phantom image based quality assurance study were used to determine clinical protocols. Protocols were developed for (1) acquiring patient PET image data for incorporation into the 3DCRT process, particularly for ensuring that the patient is positioned in their treatment position; (2) CT-PET image registration techniques and (3) GTV definition using the PET image data. The developed clinical protocols were tested using retrospective clinical trials to assess levels of inter-user variability which may be attributed to the use of these protocols. A Siemens Somatom Open Sensation 20 slice CT scanner and a Philips Allegro stand-alone PET scanner were used to acquire the images for this research. The Philips Pinnacle3 treatment planning system was used to perform the image registration and contouring of the CT and PET images. Results: Both the attenuation-corrected and transmission images obtained from standard whole-body PET staging clinical scanning protocols were acquired and imported into the treatment planning system for the phantom-based quality assurance study. Protocols for manipulating the PET images in the treatment planning system, particularly for quantifying uptake in volumes of interest and window levels for accurate geometric visualisation were determined. The automatic registration algorithms were found to have sub-voxel levels of accuracy, with transmission scan-based CT-PET registration more accurate than emission scan-based registration of the phantom images. Respiration induced image artifacts were not found to influence registration accuracy while inadequate pre-registration over-lap of the CT and PET images was found to result in large registration errors. A threshold value based on a percentage of the maximum uptake within a volume of interest was found to accurately contour the different features of the phantom despite the lower spatial resolution of the PET images. Appropriate selection of the threshold value is dependant on target-to-background ratios and the presence of respiratory motion. The results from the phantom-based study were used to design, implement and test clinical CT-PET fusion protocols. The patient PET image acquisition protocols enabled patients to be successfully identified and positioned in their radiotherapy treatment position during the acquisition of their whole-body PET staging scan. While automatic registration techniques were found to reduce inter-user variation compared to manual techniques, there was no significant difference in the registration outcomes for transmission or emission scan-based registration of the patient images, using the protocol. Tumour volumes contoured on registered patient CT-PET images using the tested threshold values and viewing windows determined from the phantom study, demonstrated less inter-user variation for the primary tumour volume contours than those contoured using only the patient’s planning CT scans. Conclusions: The developed clinical protocols allow a patient’s whole-body PET staging scan to be incorporated, manipulated and quantified in the treatment planning process to improve the accuracy of gross tumour volume localisation in 3D conformal radiotherapy for lung cancer. Image registration protocols which factor in potential software-based errors combined with adequate user training are recommended to increase the accuracy and reproducibility of registration outcomes. A semi-automated adaptive threshold contouring technique incorporating a PET windowing protocol, accurately defines the geometric edge of a tumour volume using PET image data from a stand alone PET scanner, including 4D target volumes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation develops the model of a prototype system for the digital lodgement of spatial data sets with statutory bodies responsible for the registration and approval of land related actions under the Torrens Title system. Spatial data pertain to the location of geographical entities together with their spatial dimensions and are classified as point, line, area or surface. This dissertation deals with a sub-set of spatial data, land boundary data that result from the activities performed by surveying and mapping organisations for the development of land parcels. The prototype system has been developed, utilising an event-driven paradigm for the user-interface, to exploit the potential of digital spatial data being generated from the utilisation of electronic techniques. The system provides for the creation of a digital model of the cadastral network and dependent data sets for an area of interest from hard copy records. This initial model is calibrated on registered control and updated by field survey to produce an amended model. The field-calibrated model then is electronically validated to ensure it complies with standards of format and content. The prototype system was designed specifically to create a database of land boundary data for subsequent retrieval by land professionals for surveying, mapping and related activities. Data extracted from this database are utilised for subsequent field survey operations without the need to create an initial digital model of an area of interest. Statistical reporting of differences resulting when subsequent initial and calibrated models are compared, replaces the traditional checking operations of spatial data performed by a land registry office. Digital lodgement of survey data is fundamental to the creation of the database of accurate land boundary data. This creation of the database is fundamental also to the efficient integration of accurate spatial data about land being generated by modem technology such as global positioning systems, and remote sensing and imaging, with land boundary information and other information held in Government databases. The prototype system developed provides for the delivery of accurate, digital land boundary data for the land registration process to ensure the continued maintenance of the integrity of the cadastre. Such data should meet also the more general and encompassing requirements of, and prove to be of tangible, longer term benefit to the developing, electronic land information industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Of the numerous factors that play a role in fatal pedestrian collisions, the time of day, day of the week, and time of year can be significant determinants. More than 60% of all pedestrian collisions in 2007 occurred at night, despite the presumed decrease in both pedestrian and automobile exposure during the night. Although this trend is partially explained by factors such as fatigue and alcohol consumption, prior analysis of the Fatality Analysis Reporting System database suggests that pedestrian fatalities increase as light decreases after controlling for other factors. This study applies graphical cross-tabulation, a novel visual assessment approach, to explore the relationships among collision variables. The results reveal that twilight and the first hour of darkness typically observe the greatest frequency of pedestrian fatal collisions. These hours are not necessarily the most risky on a per mile travelled basis, however, because pedestrian volumes are often still high. Additional analysis is needed to quantify the extent to which pedestrian exposure (walking/crossing activity) in these time periods plays a role in pedestrian crash involvement. Weekly patterns of pedestrian fatal collisions vary by time of year due to the seasonal changes in sunset time. In December, collisions are concentrated around twilight and the first hour of darkness throughout the week while, in June, collisions are most heavily concentrated around twilight and the first hours of darkness on Friday and Saturday. Friday and Saturday nights in June may be the most dangerous times for pedestrians. Knowing when pedestrian risk is highest is critically important for formulating effective mitigation strategies and for efficiently investing safety funds. This applied visual approach is a helpful tool for researchers intending to communicate with policy-makers and to identify relationships that can then be tested with more sophisticated statistical tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rapid growth of mobile telephone use, satellite services, and now the wireless Internet and WLANs are generating tremendous changes in telecommunication and networking. As indoor wireless communications become more prevalent, modeling indoor radio wave propagation in populated environments is a topic of significant interest. Wireless MIMO communication exploits phenomena such as multipath propagation to increase data throughput and range, or reduce bit error rates, rather than attempting to eliminate effects of multipath propagation as traditional SISO communication systems seek to do. The MIMO approach can yield significant gains for both link and network capacities, with no additional transmitting power or bandwidth consumption when compared to conventional single-array diversity methods. When MIMO and OFDM systems are combined and deployed in a suitable rich scattering environment such as indoors, a significant capacity gain can be observed due to the assurance of multipath propagation. Channel variations can occur as a result of movement of personnel, industrial machinery, vehicles and other equipment moving within the indoor environment. The time-varying effects on the propagation channel in populated indoor environments depend on the different pedestrian traffic conditions and the particular type of environment considered. A systematic measurement campaign to study pedestrian movement effects in indoor MIMO-OFDM channels has not yet been fully undertaken. Measuring channel variations caused by the relative positioning of pedestrians is essential in the study of indoor MIMO-OFDM broadband wireless networks. Theoretically, due to high multipath scattering, an increase in MIMO-OFDM channel capacity is expected when pedestrians are present. However, measurements indicate that some reductions in channel capacity could be observed as the number of pedestrians approaches 10 due to a reduction in multipath conditions as more human bodies absorb the wireless signals. This dissertation presents a systematic characterization of the effects of pedestrians in indoor MIMO-OFDM channels. Measurement results, using the MIMO-OFDM channel sounder developed at the CSIRO ICT Centre, have been validated by a customized Geometric Optics-based ray tracing simulation. Based on measured and simulated MIMO-OFDM channel capacity and MIMO-OFDM capacity dynamic range, an improved deterministic model for MIMO-OFDM channels in indoor populated environments is presented. The model can be used for the design and analysis of future WLAN to be deployed in indoor environments. The results obtained show that, in both Fixed SNR and Fixed Tx for deterministic condition, the channel capacity dynamic range rose with the number of pedestrians as well as with the number of antenna combinations. In random scenarios with 10 pedestrians, an increment in channel capacity of up to 0.89 bits/sec/Hz in Fixed SNR and up to 1.52 bits/sec/Hz in Fixed Tx has been recorded compared to the one pedestrian scenario. In addition, from the results a maximum increase in average channel capacity of 49% has been measured while 4 antenna elements are used, compared with 2 antenna elements. The highest measured average capacity, 11.75 bits/sec/Hz, corresponds to the 4x4 array with 10 pedestrians moving randomly. Moreover, Additionally, the spread between the highest and lowest value of the the dynamic range is larger for Fixed Tx, predicted 5.5 bits/sec/Hz and measured 1.5 bits/sec/Hz, in comparison with Fixed SNR criteria, predicted 1.5 bits/sec/Hz and measured 0.7 bits/sec/Hz. This has been confirmed by both measurements and simulations ranging from 1 to 5, 7 and 10 pedestrians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We alternately measured on-road and in-vehicle ultrafine (<100 nm) particle (UFP) concentration for 5 passenger vehicles that comprised an age range of 18 years. A range of cabin ventilation settings were assessed during 301 trips through a 4 km road tunnel in Sydney, Australia. Outdoor airflow(ventilation) rates under these settings were quantified on open roads using tracer gas techniques. Significant variability in tunnel trip average median in-cabin/on-road (I/O) UFP ratios was observed (0.08 to ∼1.0). Based on data spanning all test automobiles and ventilation settings, a positive linear relationship was found between outdoor air flow rate and I/O ratio, with the former accounting for a substantial proportion of variation in the latter (R2 ) 0.81). UFP concentrations recorded in cabin during tunnel travel were significantly higher than those reported by comparable studies performed on open roadways. A simple mathematical model afforded the ability to predict tunnel trip average in-cabin UFP concentrations with good accuracy. Our data indicate that under certain conditions, in-cabin UFP exposures incurred during tunnel travel may contribute significantly to daily exposure. The UFP exposure of automobile occupants appears strongly related to their choice of ventilation setting and vehicle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concentrations of ultrafine (<0.1µm) particles (UFPs) and PM2.5 (<2.5µm) were measured whilst commuting along a similar route by train, bus, ferry and automobile in Sydney, Australia. One trip on each transport mode was undertaken during both morning and evening peak hours throughout a working week, for a total of 40 trips. Analyses comprised one-way ANOVA to compare overall (i.e. all trips combined) geometric mean concentrations of both particle fractions measured across transport modes, and assessment of both the correlation between wind speed and individual trip means of UFPs and PM2.5, and the correlation between the two particle fractions. Overall geometric mean concentrations of UFPs and PM2.5 ranged from 2.8 (train) to 8.4 (bus) × 104 particles cm-3 and 22.6 (automobile) to 29.6 (bus) µg m-3, respectively, and a statistically significant difference (p <0.001) between modes was found for both particle fractions. Individual trip geometric mean concentrations were between 9.7 × 103 (train) and 2.2 × 105 (bus) particles cm-3 and 9.5 (train) to 78.7 (train) µg m-3. Estimated commuter exposures were variable, and the highest return trip mean PM2.5 exposure occurred in the ferry mode, whilst the highest UFP exposure occurred during bus trips. The correlation between fractions was generally poor, and in keeping with the duality of particle mass and number emissions in vehicle-dominated urban areas. Wind speed was negatively correlated with, and a generally poor determinant of, UFP and PM2.5 concentrations, suggesting a more significant role for other factors in determining commuter exposure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hazard perception in driving is the one of the few driving-specific skills associated with crash involvement. However, this relationship has only been examined in studies where the majority of individuals were younger than 65. We present the first data revealing an association between hazard perception and self-reported crash involvement in drivers aged 65 and over. In a sample of 271 drivers, we found that individuals whose mean response time to traffic hazards was slower than 6.68 seconds (the ROC-curve derived pass mark for the test) were 2.32 times (95% CI 1.46, 3.22) more likely to have been involved in a self-reported crash within the previous five years than those with faster response times. This likelihood ratio became 2.37 (95% CI 1.49, 3.28) when driving exposure was controlled for. As a comparison, individuals who failed a test of useful field of view were 2.70 (95% CI 1.44, 4.44) times more likely to crash than those who passed. The hazard perception test and the useful field of view measure accounted for separate variance in crash involvement. These findings indicate that hazard perception testing and training could be potentially useful for road safety interventions for this age group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To examine whether some drivers with hemianopia or quadrantanopia display safe driving skills on the road compared with drivers with normal visual fields. ---------- METHOD: An occupational therapist evaluated 22 people with hemianopia, 8 with quadrantanopia, and 30 with normal vision for driving skills during naturalistic driving using six rating scales. ---------- RESULTS: Of drivers with normal vision, >90% drove flawlessly or had minor errors. Although drivers with hemianopia were more likely to receive poorer ratings for all skills, 59.1%–81.8% performed with no or minor errors. A skill commonly problematic for them was lane keeping (40.9%). Of 8 drivers with quadrantanopia, 7 (87.5%) exhibited no or minor errors. ---------- CONCLUSION: This study of people with hemianopia or quadrantanopia with no lateral spatial neglect highlights the need to provide individual opportunities for on-road driving evaluation under natural traffic conditions if a person is motivated to return to driving after brain injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Security of tenure is the cornerstone of the land management system in Australia. Freehold title is protected throug indefeasibility of title entrenched in legislation and protection of registrable interests in land is offered through the Statutory Assurance Fund. For those with interests pertaining to Crown Land no such protection is offered, although this position is not uniform across Australia. Notably those with Crown leasehold interests or a profit a prendre on Crown Land in Queensland are not protected through registration on the freehold land register and do not have the benefit of indefeasibility of title. The issue of management of interests pertaining to Crown Land has become increasingly relevant due to the complexities associated with balancing public interests including native title with more commercial interests in land generated through carbon sequestration, forestry and mining. This paper considers the framework for the management of Crown Land in Queensland and the adequacy of this framework for commercial interests that pertain to Crown Land.