946 resultados para Association Analysis
Resumo:
Inflammatory bowel diseases (IBD), encompasses a range of chronic, immune-mediated inflammatory disorders that are usually classified under two major relapsing conditions, Crohn’s Disease (CD) and ulcerative colitis (UC). Extensive studies in the last decades have suggested that the etiology of IBD involves environmental and genetic factors that lead to dysfunction of epithelial barrier with consequent deregulation of the mucosal immune system and inadequate responses to gut microbiota.Over the last decade, the microbial species that has attracted the most attention, with respect to CD etiology, is Eschericia coli. In CD tissue, E. coli antigens have also been identified in macrophages within the lamina propria, granulomas, and in the germinal centres of mesenteric lymph nodes of patients. They have been shown to adhere to and invade intestinal epithelial cells whilst also being able to extensively replicate within macrophages. Through the work of genome-wide association studies (GWAS), there is growing evidence to suggest that the microbial imbalance between commensal and pathogenic bacteria in the gut is aided by a defect in the innate immune system. Autophagy represents a recently investigated pathway that is believed to contribute to the pathogenesis of CD, with studies identified a variant of the autophagy gene, ATG16L1, as a susceptibility gene. The aim of my thesis was to study the cellular and molecular mechanism promoted by E.coli strains in epithelial cells and to assess their contribution to IBD pathology. To achieve this we focused on developing both an in vitro and in vivo model of AIEC infection. This allowed us to further our knowledge on possible mechanisms utilised by AIEC that promoted their survival, as well as developing a better understanding of host reactions. We demonstrate a new survival mechanism promoted by E.coli HM605, whereby it induces the expression of the anti-apoptotic proteins Bcl-XL and BCL2, all of which is exacerbated in an autophagy deficient system. We have also demonstrated the presence of AIEC-induced inflammasome responses in epithelial cells which are exacerbated in an autophagy deficient system and expression of NOD-like receptors (NLRs) which might mediate inflammasome responses in vivo. Finally, we used the Citrobacter rodentium model of infectious colitis to identify Pellino3 as an important mediator in the NOD2 pathway and regulator of intestinal inflammation. In summary, we have developed robust and versatile models of AIEC infection as well as provide new insights into AIEC mediated survival pathways. The collected data provides a new perception into why AIEC bacteria are able to prosper in conditions associated with Crohn’s disease patients with a defect in autophagy.
Resumo:
Background: We conducted a survival analysis of all the confirmed cases of Adult Tuberculosis (TB) patients treated in Cork-City, Ireland. The aim of this study was to estimate Survival time (ST), including median time of survival and to assess the association and impact of covariates (TB risk factors) to event status and ST. The outcome of the survival analysis is reported in this paper. Methods: We used a retrospective cohort study research design to review data of 647 bacteriologically confirmed TB patients from the medical record of two teaching hospitals. Mean age 49 years (Range 18–112). We collected information on potential risk factors of all confirmed cases of TB treated between 2008–2012. For the survival analysis, the outcome of interest was ‘treatment failure’ or ‘death’ (whichever came first). A univariate descriptive statistics analysis was conducted using a non- parametric procedure, Kaplan -Meier (KM) method to estimate overall survival (OS), while the Cox proportional hazard model was used for the multivariate analysis to determine possible association of predictor variables and to obtain adjusted hazard ratio. P value was set at <0.05, log likelihood ratio test at >0.10. Data were analysed using SPSS version 15.0. Results: There was no significant difference in the survival curves of male and female patients. (Log rank statistic = 0.194, df = 1, p = 0.66) and among different age group (Log rank statistic = 1.337, df = 3, p = 0.72). The mean overall survival (OS) was 209 days (95%CI: 92–346) while the median was 51 days (95% CI: 35.7–66). The mean ST for women was 385 days (95%CI: 76.6–694) and for men was 69 days (95%CI: 48.8–88.5). Multivariate Cox regression showed that patient who had history of drug misuse had 2.2 times hazard than those who do not have drug misuse. Smokers and alcohol drinkers had hazard of 1.8 while patients born in country of high endemicity (BICHE) had hazard of 6.3 and HIV co-infection hazard was 1.2. Conclusion: There was no significant difference in survival curves of male and female and among age group. Women had a higher ST compared to men. But men had a higher hazard rate compared to women. Anti-TNF, immunosuppressive medication and diabetes were found to be associated with longer ST, while alcohol, smoking, RICHE, BICHE was associated with shorter ST.
Resumo:
Twitter has changed the dynamic of the academic conference. Before Twitter, delegate participation was primarily dependent on attendance and feedback was limited to post-event survey. With Twitter, delegates have become active participants. They pass comment, share reactions and critique presentations, all the while generating a running commentary. This study examines this phenomenon using the Academic & Special Libraries (A&SL) conference 2015 (hashtag #asl2015) as a case study. A post-conference survey was undertaken asking delegates how and why they used Twitter at #asl2015. A content and conceptual analysis of tweets was conducted using Topsy and Storify. This analysis examined how delegates interacted with presentations, which sessions generated most activity on the timeline and the type of content shared. Actual tweet activity and volume per presentation was compared to survey responses. Finally, recommendations on Twitter engagement for conference organisers and presenters are provided.
Resumo:
The bifunctional Ru(II) complex [Ru(BPY)2POQ-Nmet]2+ (1), in which the metallic unit is tethered by an aliphatic chain to an organic DNA binder, was designed in order to increase the affinity toward nucleic acids. The interaction of 1 with DNA was characterised from luminescence and absorption data and compared with the binding of its monofunctional metallic and organic analogues, [Ru(BPY)2(ac)phen]2+ (2) and Nmet-quinoline (3). The bifunctional complex has a binding affinity one order of magnitude higher than that of each of its separated moieties. Absorption changes induced upon addition of DNA at different pH indicate protonation of the organic sub-unit upon interaction with DNA under neutral conditions. The combination of the luminescence data under steady-state and time-resolved conditions shows that the attachment of the organic unit in 1 induces modifications of the association modes of the metallic unit, owing to the presence of the aliphatic chain which probably hinders the metallic moiety binding. The salt dependence of the binding constants was analysed in order to compare the thermodynamic parameters describing the association with DNA for each complex. This study demonstrates the interest of the derivatisation of a Ru(II) complex with an organic moiety (ia the bifunctional ligand POQ-Nmet) for the development of high affinity DNA probes or photoreactive agents.
Resumo:
BACKGROUND: Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be developed. RESULTS: We have developed a CUDA based implementation, permGPU, that employs graphics processing units in microarray association studies. We illustrate the performance and applicability of permGPU within the context of permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic increase in performance when using permGPU on an NVIDIA GTX 280 card compared to an optimized C/C++ solution running on a conventional Linux server. CONCLUSIONS: permGPU is available as an open-source stand-alone application and as an extension package for the R statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the context of microarray association studies. The current version offers six test statistics for carrying out permutation resampling analyses for binary, quantitative and censored time-to-event traits.
Resumo:
BACKGROUND: Molecular tools may provide insight into cardiovascular risk. We assessed whether metabolites discriminate coronary artery disease (CAD) and predict risk of cardiovascular events. METHODS AND RESULTS: We performed mass-spectrometry-based profiling of 69 metabolites in subjects from the CATHGEN biorepository. To evaluate discriminative capabilities of metabolites for CAD, 2 groups were profiled: 174 CAD cases and 174 sex/race-matched controls ("initial"), and 140 CAD cases and 140 controls ("replication"). To evaluate the capability of metabolites to predict cardiovascular events, cases were combined ("event" group); of these, 74 experienced death/myocardial infarction during follow-up. A third independent group was profiled ("event-replication" group; n=63 cases with cardiovascular events, 66 controls). Analysis included principal-components analysis, linear regression, and Cox proportional hazards. Two principal components analysis-derived factors were associated with CAD: 1 comprising branched-chain amino acid metabolites (factor 4, initial P=0.002, replication P=0.01), and 1 comprising urea cycle metabolites (factor 9, initial P=0.0004, replication P=0.01). In multivariable regression, these factors were independently associated with CAD in initial (factor 4, odds ratio [OR], 1.36; 95% CI, 1.06 to 1.74; P=0.02; factor 9, OR, 0.67; 95% CI, 0.52 to 0.87; P=0.003) and replication (factor 4, OR, 1.43; 95% CI, 1.07 to 1.91; P=0.02; factor 9, OR, 0.66; 95% CI, 0.48 to 0.91; P=0.01) groups. A factor composed of dicarboxylacylcarnitines predicted death/myocardial infarction (event group hazard ratio 2.17; 95% CI, 1.23 to 3.84; P=0.007) and was associated with cardiovascular events in the event-replication group (OR, 1.52; 95% CI, 1.08 to 2.14; P=0.01). CONCLUSIONS: Metabolite profiles are associated with CAD and subsequent cardiovascular events.
Resumo:
Thermal-optical analysis is a conventional method for classifying carbonaceous aerosols as organic carbon (OC) and elemental carbon (EC). This article examines the effects of three different temperature protocols on the measured EC. For analyses of parallel punches from the same ambient sample, the protocol with the highest peak helium-mode temperature (870°C) gives the smallest amount of EC, while the protocol with the lowest peak helium-mode temperature (550°C) gives the largest amount of EC. These differences are observed when either sample transmission or reflectance is used to define the OC/EC split. An important issue is the effect of the peak helium-mode temperature on the relative rate at which different types of carbon with different optical properties evolve from the filter. Analyses of solvent-extracted samples are used to demonstrate that high temperatures (870°C) lead to premature EC evolution in the helium-mode. For samples collected in Pittsburgh, this causes the measured EC to be biased low because the attenuation coefficient of pyrolyzed carbon is consistently higher than that of EC. While this problem can be avoided by lowering the peak helium-mode temperature, analyses of wood smoke dominated ambient samples and levoglucosan-spiked filters indicate that too low helium-mode peak temperatures (550°C) allow non-light absorbing carbon to slip into the oxidizing mode of the analysis. If this carbon evolves after the OC/EC split, it biases the EC measurements high. Given the complexity of ambient aerosols, there is unlikely to be a single peak helium-mode temperature at which both of these biases can be avoided. Copyright © American Association for Aerosol Research.
Resumo:
Technological advances in genotyping have given rise to hypothesis-based association studies of increasing scope. As a result, the scientific hypotheses addressed by these studies have become more complex and more difficult to address using existing analytic methodologies. Obstacles to analysis include inference in the face of multiple comparisons, complications arising from correlations among the SNPs (single nucleotide polymorphisms), choice of their genetic parametrization and missing data. In this paper we present an efficient Bayesian model search strategy that searches over the space of genetic markers and their genetic parametrization. The resulting method for Multilevel Inference of SNP Associations, MISA, allows computation of multilevel posterior probabilities and Bayes factors at the global, gene and SNP level, with the prior distribution on SNP inclusion in the model providing an intrinsic multiplicity correction. We use simulated data sets to characterize MISA's statistical power, and show that MISA has higher power to detect association than standard procedures. Using data from the North Carolina Ovarian Cancer Study (NCOCS), MISA identifies variants that were not identified by standard methods and have been externally "validated" in independent studies. We examine sensitivity of the NCOCS results to prior choice and method for imputing missing data. MISA is available in an R package on CRAN.
Association between DNA damage response and repair genes and risk of invasive serous ovarian cancer.
Resumo:
BACKGROUND: We analyzed the association between 53 genes related to DNA repair and p53-mediated damage response and serous ovarian cancer risk using case-control data from the North Carolina Ovarian Cancer Study (NCOCS), a population-based, case-control study. METHODS/PRINCIPAL FINDINGS: The analysis was restricted to 364 invasive serous ovarian cancer cases and 761 controls of white, non-Hispanic race. Statistical analysis was two staged: a screen using marginal Bayes factors (BFs) for 484 SNPs and a modeling stage in which we calculated multivariate adjusted posterior probabilities of association for 77 SNPs that passed the screen. These probabilities were conditional on subject age at diagnosis/interview, batch, a DNA quality metric and genotypes of other SNPs and allowed for uncertainty in the genetic parameterizations of the SNPs and number of associated SNPs. Six SNPs had Bayes factors greater than 10 in favor of an association with invasive serous ovarian cancer. These included rs5762746 (median OR(odds ratio)(per allele) = 0.66; 95% credible interval (CI) = 0.44-1.00) and rs6005835 (median OR(per allele) = 0.69; 95% CI = 0.53-0.91) in CHEK2, rs2078486 (median OR(per allele) = 1.65; 95% CI = 1.21-2.25) and rs12951053 (median OR(per allele) = 1.65; 95% CI = 1.20-2.26) in TP53, rs411697 (median OR (rare homozygote) = 0.53; 95% CI = 0.35 - 0.79) in BACH1 and rs10131 (median OR( rare homozygote) = not estimable) in LIG4. The six most highly associated SNPs are either predicted to be functionally significant or are in LD with such a variant. The variants in TP53 were confirmed to be associated in a large follow-up study. CONCLUSIONS/SIGNIFICANCE: Based on our findings, further follow-up of the DNA repair and response pathways in a larger dataset is warranted to confirm these results.
Resumo:
© 2013 American Psychological Association.This meta-analysis synthesizes research on the effectiveness of intelligent tutoring systems (ITS) for college students. Thirty-five reports were found containing 39 studies assessing the effectiveness of 22 types of ITS in higher education settings. Most frequently studied were AutoTutor, Assessment and Learning in Knowledge Spaces, eXtended Tutor-Expert System, and Web Interface for Statistics Education. Major findings include (a) Overall, ITS had a moderate positive effect on college students' academic learning (g = .32 to g = .37); (b) ITS were less effective than human tutoring, but they outperformed all other instruction methods and learning activities, including traditional classroom instruction, reading printed text or computerized materials, computer-assisted instruction, laboratory or homework assignments, and no-treatment control; (c) ITS's effectiveness did not significantly differ by different ITS, subject domain, or the manner or degree of their involvement in instruction and learning; and (d) effectiveness in earlier studies appeared to be significantly greater than that in more recent studies. In addition, there is some evidence suggesting the importance of teachers and pedagogy in ITS-assisted learning.
Resumo:
OBJECTIVES: Identification of patient subpopulations susceptible to develop myocardial infarction (MI) or, conversely, those displaying either intrinsic cardioprotective phenotypes or highly responsive to protective interventions remain high-priority knowledge gaps. We sought to identify novel common genetic variants associated with perioperative MI in patients undergoing coronary artery bypass grafting using genome-wide association methodology. SETTING: 107 secondary and tertiary cardiac surgery centres across the USA. PARTICIPANTS: We conducted a stage I genome-wide association study (GWAS) in 1433 ethnically diverse patients of both genders (112 cases/1321 controls) from the Genetics of Myocardial Adverse Outcomes and Graft Failure (GeneMAGIC) study, and a stage II analysis in an expanded population of 2055 patients (225 cases/1830 controls) combined from the GeneMAGIC and Duke Perioperative Genetics and Safety Outcomes (PEGASUS) studies. Patients undergoing primary non-emergent coronary bypass grafting were included. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome variable was perioperative MI, defined as creatine kinase MB isoenzyme (CK-MB) values ≥10× upper limit of normal during the first postoperative day, and not attributable to preoperative MI. Secondary outcomes included postoperative CK-MB as a quantitative trait, or a dichotomised phenotype based on extreme quartiles of the CK-MB distribution. RESULTS: Following quality control and adjustment for clinical covariates, we identified 521 single nucleotide polymorphisms in the stage I GWAS analysis. Among these, 8 common variants in 3 genes or intergenic regions met p<10(-5) in stage II. A secondary analysis using CK-MB as a quantitative trait (minimum p=1.26×10(-3) for rs609418), or a dichotomised phenotype based on extreme CK-MB values (minimum p=7.72×10(-6) for rs4834703) supported these findings. Pathway analysis revealed that genes harbouring top-scoring variants cluster in pathways of biological relevance to extracellular matrix remodelling, endoplasmic reticulum-to-Golgi transport and inflammation. CONCLUSIONS: Using a two-stage GWAS and pathway analysis, we identified and prioritised several potential susceptibility loci for perioperative MI.
Resumo:
Genome-wide association studies (GWASs) have characterized 13 loci associated with melanoma, which only account for a small part of melanoma risk. To identify new genes with too small an effect to be detected individually but which collectively influence melanoma risk and/or show interactive effects, we used a two-step analysis strategy including pathway analysis of genome-wide SNP data, in a first step, and epistasis analysis within significant pathways, in a second step. Pathway analysis, using the gene-set enrichment analysis (GSEA) approach and the gene ontology (GO) database, was applied to the outcomes of MELARISK (3,976 subjects) and MDACC (2,827 subjects) GWASs. Cross-gene SNP-SNP interaction analysis within melanoma-associated GOs was performed using the INTERSNP software. Five GO categories were significantly enriched in genes associated with melanoma (false discovery rate ≤ 5% in both studies): response to light stimulus, regulation of mitotic cell cycle, induction of programmed cell death, cytokine activity and oxidative phosphorylation. Epistasis analysis, within each of the five significant GOs, showed significant evidence for interaction for one SNP pair at TERF1 and AFAP1L2 loci (pmeta-int = 2.0 × 10(-7) , which met both the pathway and overall multiple-testing corrected thresholds that are equal to 9.8 × 10(-7) and 2.0 × 10(-7) , respectively) and suggestive evidence for another pair involving correlated SNPs at the same loci (pmeta-int = 3.6 × 10(-6) ). This interaction has important biological relevance given the key role of TERF1 in telomere biology and the reported physical interaction between TERF1 and AFAP1L2 proteins. This finding brings a novel piece of evidence for the emerging role of telomere dysfunction into melanoma development.
Resumo:
Recent investigation has identified association of IL-12p40 blood levels with melanoma recurrence and patient survival. No studies have investigated associations of single-nucleotide polymorphisms (SNPs) with melanoma patient IL-12p40 blood levels or their potential contributions to melanoma susceptibility or patient outcome. In the current study, 818,237 SNPs were available for 1,804 melanoma cases and 1,026 controls. IL-12p40 blood levels were assessed among 573 cases (discovery), 249 cases (case validation), and 299 controls (control validation). SNPs were evaluated for association with log[IL-12p40] levels in the discovery data set and replicated in two validation data sets, and significant SNPs were assessed for association with melanoma susceptibility and patient outcomes. The most significant SNP associated with log[IL-12p40] was in the IL-12B gene region (rs6897260, combined P=9.26 × 10(-38)); this single variant explained 13.1% of variability in log[IL-12p40]. The most significant SNP in EBF1 was rs6895454 (combined P=2.24 × 10(-9)). A marker in IL12B was associated with melanoma susceptibility (rs3213119, multivariate P=0.0499; OR=1.50, 95% CI 1.00-2.24), whereas a marker in EBF1 was associated with melanoma-specific survival in advanced-stage patients (rs10515789, multivariate P=0.02; HR=1.93, 95% CI 1.11-3.35). Both EBF1 and IL12B strongly regulate IL-12p40 blood levels, and IL-12p40 polymorphisms may contribute to melanoma susceptibility and influence patient outcome.
Resumo:
PURPOSE: The role of PM10 in the development of allergic diseases remains controversial among epidemiological studies, partly due to the inability to control for spatial variations in large-scale risk factors. This study aims to investigate spatial correspondence between the level of PM10 and allergic diseases at the sub-district level in Seoul, Korea, in order to evaluate whether the impact of PM10 is observable and spatially varies across the subdistricts. METHODS: PM10 measurements at 25 monitoring stations in the city were interpolated to 424 sub-districts where annual inpatient and outpatient count data for 3 types of allergic diseases (atopic dermatitis, asthma, and allergic rhinitis) were collected. We estimated multiple ordinary least square regression models to examine the association of the PM10 level with each of the allergic diseases, controlling for various sub-district level covariates. Geographically weighted regression (GWR) models were conducted to evaluate how the impact of PM10 varies across the sub-districts. RESULTS: PM10 was found to be a significant predictor of atopic dermatitis patient count (P<0.01), with greater association when spatially interpolated at the sub-district level. No significant effect of PM10 was observed on allergic rhinitis and asthma when socioeconomic factors were controlled for. GWR models revealed spatial variation of PM10 effects on atopic dermatitis across the sub-districts in Seoul. The relationship of PM10 levels to atopic dermatitis patient counts is found to be significant only in the Gangbuk region (P<0.01), along with other covariates including average land value, poverty rate, level of education and apartment rate (P<0.01). CONCLUSIONS: Our findings imply that PM10 effects on allergic diseases might not be consistent throughout Seoul. GIS-based spatial modeling techniques could play a role in evaluating spatial variation of air pollution impacts on allergic diseases at the sub-district level, which could provide valuable guidelines for environmental and public health policymakers.
Resumo:
Most of the air quality modelling work has been so far oriented towards deterministic simulations of ambient pollutant concentrations. This traditional approach, which is based on the use of one selected model and one data set of discrete input values, does not reflect the uncertainties due to errors in model formulation and input data. Given the complexities of urban environments and the inherent limitations of mathematical modelling, it is unlikely that a single model based on routinely available meteorological and emission data will give satisfactory short-term predictions. In this study, different methods involving the use of more than one dispersion model, in association with different emission simulation methodologies and meteorological data sets, were explored for predicting best CO and benzene estimates, and related confidence bounds. The different approaches were tested using experimental data obtained during intensive monitoring campaigns in busy street canyons in Paris, France. Three relative simple dispersion models (STREET, OSPM and AEOLIUS) that are likely to be used for regulatory purposes were selected for this application. A sensitivity analysis was conducted in order to identify internal model parameters that might significantly affect results. Finally, a probabilistic methodology for assessing urban air quality was proposed.