999 resultados para Ash layer
Resumo:
When designing deep ocean structures, it is necessary to estimate the effects of internal waves on the platform and auxiliary parts such as tension leg, riser and mooring lines. Up to now, only a few studies are concerned with the internal wave velocity fields. By using the most representative two-layer model, we have analyzed the behavior of velocity field induced by interfacial wave in the present paper. We find that there may exist velocity shear of fluid particles in the upper and lower layers so that any structures in the ocean are subjected to shear force nearby the interface. In the meantime, the magnitude of velocity for long internal wave appears spatially uniform in the respective layer although they still decay exponentially. Finally, the temporal variation for Stokes and solitary waves are shown to be of periodical and pulse type.
Resumo:
Enhancing the handover process in broadband wireless communication deployment has traditionally motivated many research initiatives. In a high-speed railway domain, the challenge is even greater. Owing to the long distances covered, the mobile node gets involved in a compulsory sequence of handover processes. Consequently, poor performance during the execution of these handover processes significantly degrades the global end-to-end performance. This article proposes a new handover strategy for the railway domain: the RMPA handover, a Reliable Mobility Pattern Aware IEEE 802.16 handover strategy "customized" for a high-speed mobility scenario. The stringent high mobility feature is balanced with three other positive features in a high-speed context: mobility pattern awareness, different sources for location discovery techniques, and a previously known traffic data profile. To the best of the authors' knowledge, there is no IEEE 802.16 handover scheme that simultaneously covers the optimization of the handover process itself and the efficient timing of the handover process. Our strategy covers both areas of research while providing a cost-effective and standards-based solution. To schedule the handover process efficiently, the RMPA strategy makes use of a context aware handover policy; that is, a handover policy based on the mobile node mobility pattern, the time required to perform the handover, the neighboring network conditions, the data traffic profile, the received power signal, and current location and speed information of the train. Our proposal merges all these variables in a cross layer interaction in the handover policy engine. It also enhances the handover process itself by establishing the values for the set of handover configuration parameters and mechanisms of the handover process. RMPA is a cost-effective strategy because compatibility with standards-based equipment is guaranteed. The major contributions of the RMPA handover are in areas that have been left open to the handover designer's discretion. Our simulation analysis validates the RMPA handover decision rules and design choices. Our results supporting a high-demand video application in the uplink stream show a significant improvement in the end-to-end quality of service parameters, including end-to-end delay (22%) and jitter (80%), when compared with a policy based on signal-to-noise-ratio information.