854 resultados para Artificial intelligence|Computer science


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identifying the correct sense of a word in context is crucial for many tasks in natural language processing (machine translation is an example). State-of-the art methods for Word Sense Disambiguation (WSD) build models using hand-crafted features that usually capturing shallow linguistic information. Complex background knowledge, such as semantic relationships, are typically either not used, or used in specialised manner, due to the limitations of the feature-based modelling techniques used. On the other hand, empirical results from the use of Inductive Logic Programming (ILP) systems have repeatedly shown that they can use diverse sources of background knowledge when constructing models. In this paper, we investigate whether this ability of ILP systems could be used to improve the predictive accuracy of models for WSD. Specifically, we examine the use of a general-purpose ILP system as a method to construct a set of features using semantic, syntactic and lexical information. This feature-set is then used by a common modelling technique in the field (a support vector machine) to construct a classifier for predicting the sense of a word. In our investigation we examine one-shot and incremental approaches to feature-set construction applied to monolingual and bilingual WSD tasks. The monolingual tasks use 32 verbs and 85 verbs and nouns (in English) from the SENSEVAL-3 and SemEval-2007 benchmarks; while the bilingual WSD task consists of 7 highly ambiguous verbs in translating from English to Portuguese. The results are encouraging: the ILP-assisted models show substantial improvements over those that simply use shallow features. In addition, incremental feature-set construction appears to identify smaller and better sets of features. Taken together, the results suggest that the use of ILP with diverse sources of background knowledge provide a way for making substantial progress in the field of WSD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The substitution of missing values, also called imputation, is an important data preparation task for many domains. Ideally, the substitution of missing values should not insert biases into the dataset. This aspect has been usually assessed by some measures of the prediction capability of imputation methods. Such measures assume the simulation of missing entries for some attributes whose values are actually known. These artificially missing values are imputed and then compared with the original values. Although this evaluation is useful, it does not allow the influence of imputed values in the ultimate modelling task (e.g. in classification) to be inferred. We argue that imputation cannot be properly evaluated apart from the modelling task. Thus, alternative approaches are needed. This article elaborates on the influence of imputed values in classification. In particular, a practical procedure for estimating the inserted bias is described. As an additional contribution, we have used such a procedure to empirically illustrate the performance of three imputation methods (majority, naive Bayes and Bayesian networks) in three datasets. Three classifiers (decision tree, naive Bayes and nearest neighbours) have been used as modelling tools in our experiments. The achieved results illustrate a variety of situations that can take place in the data preparation practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clustering quality or validation indices allow the evaluation of the quality of clustering in order to support the selection of a specific partition or clustering structure in its natural unsupervised environment, where the real solution is unknown or not available. In this paper, we investigate the use of quality indices mostly based on the concepts of clusters` compactness and separation, for the evaluation of clustering results (partitions in particular). This work intends to offer a general perspective regarding the appropriate use of quality indices for the purpose of clustering evaluation. After presenting some commonly used indices, as well as indices recently proposed in the literature, key issues regarding the practical use of quality indices are addressed. A general methodological approach is presented which considers the identification of appropriate indices thresholds. This general approach is compared with the simple use of quality indices for evaluating a clustering solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several real problems involve the classification of data into categories or classes. Given a data set containing data whose classes are known, Machine Learning algorithms can be employed for the induction of a classifier able to predict the class of new data from the same domain, performing the desired discrimination. Some learning techniques are originally conceived for the solution of problems with only two classes, also named binary classification problems. However, many problems require the discrimination of examples into more than two categories or classes. This paper presents a survey on the main strategies for the generalization of binary classifiers to problems with more than two classes, known as multiclass classification problems. The focus is on strategies that decompose the original multiclass problem into multiple binary subtasks, whose outputs are combined to obtain the final prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Support vector machines (SVMs) were originally formulated for the solution of binary classification problems. In multiclass problems, a decomposition approach is often employed, in which the multiclass problem is divided into multiple binary subproblems, whose results are combined. Generally, the performance of SVM classifiers is affected by the selection of values for their parameters. This paper investigates the use of genetic algorithms (GAs) to tune the parameters of the binary SVMs in common multiclass decompositions. The developed GA may search for a set of parameter values common to all binary classifiers or for differentiated values for each binary classifier. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful classification, information retrieval and image analysis tools are intimately related with the quality of the features employed in the process. Pixel intensities, color, texture and shape are, generally, the basis from which most of the features are Computed and used in such fields. This papers presents a novel shape-based feature extraction approach where an image is decomposed into multiple contours, and further characterized by Fourier descriptors. Unlike traditional approaches we make use of topological knowledge to generate well-defined closed contours, which are efficient signatures for image retrieval. The method has been evaluated in the CBIR context and image analysis. The results have shown that the multi-contour decomposition, as opposed to a single shape information, introduced a significant improvement in the discrimination power. (c) 2008 Elsevier B.V. All rights reserved,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Case-Based Reasoning is a methodology for problem solving based on past experiences. This methodology tries to solve a new problem by retrieving and adapting previously known solutions of similar problems. However, retrieved solutions, in general, require adaptations in order to be applied to new contexts. One of the major challenges in Case-Based Reasoning is the development of an efficient methodology for case adaptation. The most widely used form of adaptation employs hand coded adaptation rules, which demands a significant knowledge acquisition and engineering effort. An alternative to overcome the difficulties associated with the acquisition of knowledge for case adaptation has been the use of hybrid approaches and automatic learning algorithms for the acquisition of the knowledge used for the adaptation. We investigate the use of hybrid approaches for case adaptation employing Machine Learning algorithms. The approaches investigated how to automatically learn adaptation knowledge from a case base and apply it to adapt retrieved solutions. In order to verify the potential of the proposed approaches, they are experimentally compared with individual Machine Learning techniques. The results obtained indicate the potential of these approaches as an efficient approach for acquiring case adaptation knowledge. They show that the combination of Instance-Based Learning and Inductive Learning paradigms and the use of a data set of adaptation patterns yield adaptations of the retrieved solutions with high predictive accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several popular Machine Learning techniques are originally designed for the solution of two-class problems. However, several classification problems have more than two classes. One approach to deal with multiclass problems using binary classifiers is to decompose the multiclass problem into multiple binary sub-problems disposed in a binary tree. This approach requires a binary partition of the classes for each node of the tree, which defines the tree structure. This paper presents two algorithms to determine the tree structure taking into account information collected from the used dataset. This approach allows the tree structure to be determined automatically for any multiclass dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Species` potential distribution modelling consists of building a representation of the fundamental ecological requirements of a species from biotic and abiotic conditions where the species is known to occur. Such models can be valuable tools to understand the biogeography of species and to support the prediction of its presence/absence considering a particular environment scenario. This paper investigates the use of different supervised machine learning techniques to model the potential distribution of 35 plant species from Latin America. Each technique was able to extract a different representation of the relations between the environmental conditions and the distribution profile of the species. The experimental results highlight the good performance of random trees classifiers, indicating this particular technique as a promising candidate for modelling species` potential distribution. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Credit scoring modelling comprises one of the leading formal tools for supporting the granting of credit. Its core objective consists of the generation of a score by means of which potential clients can be listed in the order of the probability of default. A critical factor is whether a credit scoring model is accurate enough in order to provide correct classification of the client as a good or bad payer. In this context the concept of bootstraping aggregating (bagging) arises. The basic idea is to generate multiple classifiers by obtaining the predicted values from the fitted models to several replicated datasets and then combining them into a single predictive classification in order to improve the classification accuracy. In this paper we propose a new bagging-type variant procedure, which we call poly-bagging, consisting of combining predictors over a succession of resamplings. The study is derived by credit scoring modelling. The proposed poly-bagging procedure was applied to some different artificial datasets and to a real granting of credit dataset up to three successions of resamplings. We observed better classification accuracy for the two-bagged and the three-bagged models for all considered setups. These results lead to a strong indication that the poly-bagging approach may promote improvement on the modelling performance measures, while keeping a flexible and straightforward bagging-type structure easy to implement. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Object selection refers to the mechanism of extracting objects of interest while ignoring other objects and background in a given visual scene. It is a fundamental issue for many computer vision and image analysis techniques and it is still a challenging task to artificial Visual systems. Chaotic phase synchronization takes place in cases involving almost identical dynamical systems and it means that the phase difference between the systems is kept bounded over the time, while their amplitudes remain chaotic and may be uncorrelated. Instead of complete synchronization, phase synchronization is believed to be a mechanism for neural integration in brain. In this paper, an object selection model is proposed. Oscillators in the network representing the salient object in a given scene are phase synchronized, while no phase synchronization occurs for background objects. In this way, the salient object can be extracted. In this model, a shift mechanism is also introduced to change attention from one object to another. Computer simulations show that the model produces some results similar to those observed in natural vision systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular neural networks (CNNs) have locally connected neurons. This characteristic makes CNNs adequate for hardware implementation and, consequently, for their employment on a variety of applications as real-time image processing and construction of efficient associative memories. Adjustments of CNN parameters is a complex problem involved in the configuration of CNN for associative memories. This paper reviews methods of associative memory design based on CNNs, and provides comparative performance analysis of these approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological systems have facility to capture salient object(s) in a given scene, but it is still a difficult task to be accomplished by artificial vision systems. In this paper a visual selection mechanism based on the integrate and fire neural network is proposed. The model not only can discriminate objects in a given visual scene, but also can deliver focus of attention to the salient object. Moreover, it processes a combination of relevant features of an input scene, such as intensity, color, orientation, and the contrast of them. In comparison to other visual selection approaches, this model presents several interesting features. It is able to capture attention of objects in complex forms, including those linearly nonseparable. Moreover, computer simulations show that the model produces results similar to those observed in natural vision systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chaotic synchronization has been discovered to be an important property of neural activities, which in turn has encouraged many researchers to develop chaotic neural networks for scene and data analysis. In this paper, we study the synchronization role of coupled chaotic oscillators in networks of general topology. Specifically, a rigorous proof is presented to show that a large number of oscillators with arbitrary geometrical connections can be synchronized by providing a sufficiently strong coupling strength. Moreover, the results presented in this paper not only are valid to a wide class of chaotic oscillators, but also cover the parameter mismatch case. Finally, we show how the obtained result can be applied to construct an oscillatory network for scene segmentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synchronization and chaos play important roles in neural activities and have been applied in oscillatory correlation modeling for scene and data analysis. Although it is an extensively studied topic, there are still few results regarding synchrony in locally coupled systems. In this paper we give a rigorous proof to show that large numbers of coupled chaotic oscillators with parameter mismatch in a 2D lattice can be synchronized by providing a sufficiently large coupling strength. We demonstrate how the obtained result can be applied to construct an oscillatory network for scene segmentation. (C) 2007 Elsevier B.V. All rights reserved.