995 resultados para Archean Crustal Evolution
Resumo:
Fracture due to coalescence of microcracks seems to be catalogued in a new model of evolution induced catastrophe (EIC). The key underlying mechanism of the EIC is its automatically enlarging interaction of microcracks. This leads to an explosively evolving catastrophe. Most importantly, the EIC presents a fractal dimension spectrum which appears to be dependent on the interaction.
Resumo:
The paper outlines the study of the evoluation of the thermally assisted visco-plastic shearing. Analytically, numerically and experimentally, it is demonstrated that the whole process of the shear consists of multi-stages. Owing to instability, early uniform unsteady shear deformation would transform into localization and finally a band-like shearing zone forms, which appears to be a quasi-steady dissipative structure. The mechanisms governing the processes are analyzed. Accompanying the shear banding, micro-damage also develops. The microscopic observations reveal the details of the cumulative damage.
Resumo:
The ideal micro-cracks are treated with the number-density function; the characteristics of their evolution are investigated; a deterministic model is applied to the discussion of their extension. It is discovered that under certain conditions saturation may occur in the number-density. The main features of the statistical formulation are illustrated by several examples and compared with those observed in experiments.
Resumo:
In order to understand the mechanism of the incipient spallation in rolled metals, a one dimensional statistical mode1 on evolution of microcracks in spallation was proposed. The crack length appears to be the fundamental variable in the statistical description. Two dynamic processes, crack nucleation and growth, were involved in the model of damage evolution. A simplified case was examined and preliminary correlation to experimental observations of spallation was made.
Resumo:
been analyzed in detail. The effects ofm icroscopic energy transfer from
Resumo:
This paper presents a general self-consistent theory of evolution and propagation of wavelets on the galactic disk. A simplified model for this theory, i. e. the thin transition-layer approximation is proposed.There are three types of solutions to the basic equation governing the evolution of wavelets on the disk: (ⅰ) normal propagating type; (ⅱ) swing type; (ⅲ) general evolving type. The results show that the first two types are applicable to a certain domain on the galactic disk and a certain region of the wave number of wavelets. The third is needed to join the other two types and to yield a coherent total picture of the wave motion. From the present theory, it can be seen that the well-known "swing theory" of the G-L sheet model holds only for a certain class of basic states of galaxies.
Resumo:
In this paper, the effect of current on the evolution of a solitary wave is studied. The governing equation in the far field, KdV equation with variable coefficients, is derived. A solitary wave solution is obtained. The fission of a solitary wave is discussed, and the fissible region on the Q~h2-plane and the criterion of the number of the solitary waves after fission are found.
Resumo:
In this part of the present work, a simplified model—the thin transition layer theory is proposed. The comparison of this model with the G-L sheet model is made.