910 resultados para Aquatic vertebrates
Resumo:
Uganda is rich in aquatic resources. Up to 17 % of the country's surface area is covered by Aquatic systems comprising five major lakes; Victoria, Albert, Kyoga, Edward, George, about 160 minor lakes, an extensive river and stream system, dams and ponds. These aquatic systems are associated with extensive swamps
Resumo:
The poster explains the effects of aquatic plants to fisheries and how they can be controlled.
Resumo:
The wide use of antibiotics in aquaculture has led to the emergence of resistant microbial species. It should be avoided/minimized by controlling the amount of drug employed in fish farming. For this purpose, the present work proposes test-strip papers aiming at the detection/semi-quantitative determination of organic drugs by visual comparison of color changes, in a similar analytical procedure to that of pH monitoring by universal pH paper. This is done by establishing suitable chemical changes upon cellulose, attributing the paper the ability to react with the organic drug and to produce a color change. Quantitative data is also enabled by taking a picture and applying a suitable mathematical treatment to the color coordinates given by the HSL system used by windows. As proof of concept, this approach was applied to oxytetracycline (OXY), one of the antibiotics frequently used in aquaculture. A bottom-up modification of paper was established, starting by the reaction of the glucose moieties on the paper with 3-triethoxysilylpropylamine (APTES). The so-formed amine layer allowed binding to a metal ion by coordination chemistry, while the metal ion reacted after with the drug to produce a colored compound. The most suitable metals to carry out such modification were selected by bulk studies, and the several stages of the paper modification were optimized to produce an intense color change against the concentration of the drug. The paper strips were applied to the analysis of spiked environmental water, allowing a quantitative determination for OXY concentrations as low as 30 ng/mL. In general, this work provided a simple, method to screen and discriminate tetracycline drugs, in aquaculture, being a promising tool for local, quick and cheap monitoring of drugs.
Resumo:
Passive sampling devices (PS) are widely used for pollutant monitoring in water, but estimation of measurement uncertainties by PS has seldom been undertaken. The aim of this work was to identify key parameters governing PS measurements of metals and their dispersion. We report the results of an in situ intercomparison exercise on diffusive gradient in thin films (DGT) in surface waters. Interlaboratory uncertainties of time-weighted average (TWA) concentrations were satisfactory (from 28% to 112%) given the number of participating laboratories (10) and ultra-trace metal concentrations involved. Data dispersion of TWA concentrations was mainly explained by uncertainties generated during DGT handling and analytical procedure steps. We highlight that DGT handling is critical for metals such as Cd, Cr and Zn, implying that DGT assembly/dismantling should be performed in very clean conditions. Using a unique dataset, we demonstrated that DGT markedly lowered the LOQ in comparison to spot sampling and stressed the need for accurate data calculation.
Resumo:
Caption title.
Resumo:
Complete and transparent reporting of key elements of diagnostic accuracy studies for infectious diseases in cultured and wild aquatic animals benefits end-users of these tests, enabling the rational design of surveillance programs, the assessment of test results from clinical cases and comparisons of diagnostic test performance. Based on deficiencies in the Standards for Reporting of Diagnostic Accuracy (STARD) guidelines identified in a prior finfish study (Gardner et al. 2014), we adapted the Standards for Reporting of Animal Diagnostic Accuracy Studies—paratuberculosis (STRADAS-paraTB) checklist of 25 reporting items to increase their relevance to finfish, amphibians, molluscs, and crustaceans and provided examples and explanations for each item. The checklist, known as STRADAS-aquatic, was developed and refined by an expert group of 14 transdisciplinary scientists with experience in test evaluation studies using field and experimental samples, in operation of reference laboratories for aquatic animal pathogens, and in development of international aquatic animal health policy. The main changes to the STRADAS-paraTB checklist were to nomenclature related to the species, the addition of guidelines for experimental challenge studies, and the designation of some items as relevant only to experimental studies and ante-mortem tests. We believe that adoption of these guidelines will improve reporting of primary studies of test accuracy for aquatic animal diseases and facilitate assessment of their fitness-for-purpose. Given the importance of diagnostic tests to underpin the Sanitary and Phytosanitary agreement of the World Trade Organization, the principles outlined in this paper should be applied to other World Organisation for Animal Health (OIE)-relevant species.
Resumo:
O herbicida Atrazina (ATR) é um agrotóxico utilizado há cerca de 50 anos, responsável pelo controle seletivo de plantas daninhas em cultivo de arroz, milho e cana-de-açúcar, principalmente. Estudos recentes apontam diversos efeitos desse herbicida em invertebrados e vertebrados, através da contaminação do solo, bem como da lixiviação para os ecossistemas aquáticos. Foi demonstrado que a ATR é um desregulador endócrino, além de causar efeitos como estresse oxidativo, imunotoxicidade e distúrbios no metabolismo energético. No presente estudo, a espécie nativa Poecilia vivipara foi utilizada como modelo experimental para identificar e analisar a expressão de genes atuantes na via esteroidogênica (StAR e Cyp19a1) e genes atuantes no sistema de defesa antioxidante enzimático (SOD-1 e CAT), frente a exposição à diferentes concentrações de ATR. Sequências parciais dos genes-alvo foram obtidas e comparadas com sequências disponíveis de espécies próximas. Foram analisadas a expressão órgãoespecífica para cada um dos genes isolados, bem como a expressão dos genes frente à exposição ao herbicida atrazina. Os animais foram expostos a ATR em concentrações de 2, 10 e 100 µg/L e a expressão dos genes em gônadas e fígado desses animais foram analisadas em 24 e 96 horas de exposição. As sequências obtidas dos genes StAR, Cyp19a1, SOD-1 e CAT apresentaram 821, 80, 954, 350 pares de bases respectivamente, com identidades que variam de 86 a 100% com espécies filogeneticamente próximas a P. vivipara. Os animais apresentaram uma maior expressão dos genes StAR e Cyp19a1 nas gônadas e no fígado, enquanto a menor expressão se mostrou em órgãos como intestino e baço. Já os genes SOD e CAT apresentaram uma maior expressão no fígado, e menor expressão no intestino. Em relação à expressão gênica frente à exposição à ATR, os resultados apontaram para uma indução dos genes StAR, SOD e CAT em 24 horas, nas gônadas e no fígado, enquanto 8 que a expressão do gene Cyp19a1 foi aumentada apenas após 96 horas de exposição. Foi demonstrado que o herbicida ATR, mesmo em baixas concentrações, é capaz de desregular a expressão de genes que codificam tanto para proteínas componentes da via de síntese de hormônios esteróides, quanto para enzimas atuantes na resposta antioxidante celular de P. vivipara.
Resumo:
A new procedure was developed in this study, based on a system equipped with a cellulose membrane and a tetraethylenepentamine hexaacetate chelator (MD-TEPHA) for in situ characterization of the lability of metal species in aquatic systems. To this end, the DM-TEPHA system was prepared by adding TEPHA chelator to cellulose bags pre-purified with 1.0 mol L-1 of HCl and NaOH solutions. After the MD-TEPHA system was sealed, it was examined in the laboratory to evaluate the influence of complexation time (0-24 h), pH (3.0, 4.0, 5.0, 6.0 and 7.0), metal ions (Cu, Cd, Fe, Mn and Ni) and concentration of organic matter (15, 30 and 60 mg L-1) on the relative lability of metal species by TEPHA chelator. The results showed that Fe and Cu metals were complexed more slowly by TEPHA chelator in the MD-TEPHA system than were Cd, Ni and Mn in all pH used. It was also found that the pH strongly influences the process of metal complexation by the MD-TEPHA system. At all the pH levels, Cd, Mn and Ni showed greater complexation with TEPHA chelator (recovery of about 95-75%) than did Cu and Fe metals. Time also affects the lability of metal species complexed by aquatic humic substances (AHS); while Cd, Ni and Mn showed a faster kinetics, reaching equilibrium after about 100 min, and Cu and Fe approached equilibrium after 400 min. Increasing the AHS concentration decreases the lability of metal species by shifting the equilibrium to AHS-metal complexes. Our results indicate that the system under study offers an interesting alternative that can be applied to in situ experiments for differentiation of labile and inert metal species in aquatic systems. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A method has been developed for the direct determination of Cu, Cd, Ni and Pb in aquatic humic substances (AHS) by graphite furnace atomic absorption spectrometry. AHS were isolated from water samples rich in organic matter, collected in the Brazilian Ecological Parks. All analytical curves presented good linear correlation coefficient. The limits of detection and quantification were in the ranges 2.5-16.7 mu g g(-1) and 8.5-50.0 mu g g(-1), respectively. The accuracy was determined using recovery tests, and for all analytes recovery percentages ranged from 93 - 98 %, with a relative standard deviation less than 4 %. The results indicated that the proposed method is a suitable alternative for the direct determination of metals in AHS.
Resumo:
The production and use of synthetic nanoparticles is growing rapidly, and therefore the presence of these materials in the environment seems inevitable. Titanium dioxide (TiO2) presents various possible uses in industry, cosmetics, and even in the treatment of contaminated environments. Studies about the potential ecotoxicological risks of TiO2 nanoparticles (nano-TiO2) have been published but their results are still inconclusive. It should be noted that the properties of the diverse nano-TiO2 must be considered in order to establish experimental models to study their toxicity to environmentally relevant species. Moreover, the lack of descriptions and characterization of nanoparticles, as well as differences in the experimental conditions employed, have been a compromising factor in the comparison of results obtained in various studies. Therefore, the purpose of this paper is to make a simple review of the principal properties of TiO2, especially in nanoparticulate form, which should be considered in aquatic toxicology studies, and a compilation of the works that have been published on the subject.
Resumo:
Interactions between two endocrine disruptors (ED) and aquatic humic substances (AHS) from tropical rivers were studied using an ultrafiltration system equipped with a 1 kDa cut-off cellulose membrane to separate free ED from the fraction bound in the AHS. Quantification of 17 alpha-ethynylestradiol and bisphenol A was performed using gas chromatography-mass spectrometry (GC-MS). The times required for establishment of equilibrium between the AHS and the ED were ca. 30 min, and complexation capacities for 17 alpha-ethynylestradiol and bisphenol A were 18.53 and 2.07 mg g(-1) TOC, respectively. The greater interaction of AHS with 17 alpha-ethynylestradiol, compared to bisphenol A, was due to the presence of hydrogen in the structure of 17 alpha-ethynylestradiol, which could interact with ionized oxygenated groups of the AHS. The results indicate that AHS can strongly influence the transport and reactivity of endocrine disruptors in aquatic systems.
Resumo:
Aquatic plants of the genus Ruppia inhabit some of the most threatened habitats in the world, such as coastal lagoons and inland saline to brackish waters where their meadows play several key roles. The evolutionary history of this genus has been affected by the processes of hybridization, polyploidization, and vicariance, which have resulted in uncertainty regarding the number of species. In the present study, we apply microsatellite markers for the identification, genetic characterization, and detection of hybridization events among populations of putative Ruppia species found in the southern Iberian Peninsula, with the exception of a clearly distinct species, the diploid Ruppia maritima. Microsatellite markers group the populations into genetically distinct entities that are not coincident with geographical location and contain unique diagnostic alleles. These results support the interpretation of these entities as distinct species: designated here as (1) Ruppia drepanensis, (2) Ruppia cf. maritima, and (3) Ruppia cirrhosa. A fourth distinct genetic entity was identified as a putative hybrid between R. cf. maritima and R. cirrhosa because it contained a mixture of microsatellite alleles that are otherwise unique to these putative species. Hence, our analyses were able to discriminate among different genetic entities of Ruppia and, by adding multilocus nuclear markers, we confirm hybridization as an important process of speciation within the genus. In addition, careful taxonomic curation of the samples enabled us to determine the genotypic and genetic diversity and differentiation among populations of each putative Ruppia species. This will be important for identifying diversity hotspots and evaluating patterns of population genetic connectivity. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 00, 000–000.
Resumo:
Os rios e lagos de várzea da província petrolífera de Urucu, na Amazônia Central, são amplamente colonizados por macrófitas aquáticas, que podem ser afetadas por acidentes durante a exploração e o transporte de petróleo. Entre as macrófitas, a espécie flutuante Eichhornia crassipes (aguapé) ocorre abundantemente na região; OBJETIVO: O objetivo desse estudo foi verificar o efeito de diferentes dosagens do petróleo de Urucu (0; 0,5; 1,5 e 3,0 L.m-2) na biomassa viva e morta de E. crassipes e em algumas características físicas e químicas da água; MÉTODOS: O experimento teve oitenta e quatro dias de duração. A cada sete dias foi determinada a biomassa (viva e morta) de E. crassipes e os valores de temperatura, pH, condutividade elétrica e oxigênio dissolvido da água; RESULTADOS: A dosagem de 0,5 L.m-2 foi suficiente para causar mortalidade parcial (48%) em E. crassipes após trinta e cinco dias de exposição ao petróleo. A dosagem de 3,0 L.m-2 causou mortalidade total (100%) em E. crassipes em oitenta e quatro dias de exposição. A decomposição do petróleo e da biomassa morta de E. crassipes provocam a redução do oxigênio dissolvido e do pH, e aumento da condutividade elétrica e de fósforo total na água; CONCLUSÕES: Nós concluímos que um derramamento de petróleo pode provocar mortalidade total em uma população de uma espécie de macrófita, mas não em uma outra. Isto pode alterar a diversidade de espécies de macrófitas na região impactada. No caso de Eichhornia crassipes e Pistia stratiotes, um derramamento de petróleo de Urucu pode favorecer E. crassipes, a espécie menos sensível ao petróleo.
Resumo:
I utilized state the art remote sensing and GIS (Geographical Information System) techniques to study large scale biological, physical and ecological processes of coastal, nearshore, and offshore waters of Lake Michigan and Lake Superior. These processes ranged from chlorophyll a and primary production time series analysies in Lake Michigan to coastal stamp sand threats on Buffalo Reef in Lake Superior. I used SeaWiFS (Sea-viewing Wide Field-of-view Sensor) satellite imagery to trace various biological, chemical and optical water properties of Lake Michigan during the past decade and to investigate the collapse of early spring primary production. Using spatial analysis techniques, I was able to connect these changes to some important biological processes of the lake (quagga mussels filtration). In a separate study on Lake Superior, using LiDAR (Light Detection and Ranging) and aerial photos, we examined natural coastal erosion in Grand Traverse Bay, Michigan, and discussed a variety of geological features that influence general sediment accumulation patterns and interactions with migrating tailings from legacy mining. These sediments are moving southwesterly towards Buffalo Reef, creating a threat to the lake trout and lake whitefish breeding ground.