908 resultados para Aquatic organisms


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research to date has suggested that both individual marine species and ecological processes are expected to exhibit diverse responses to the environmental effects of climate change. Evolutionary responses can occur on rapid (ecological) timescales, and yet studies typically do not consider the role that adaptive evolution will play in modulating biological responses to climate change. Investigations into such responses have typically been focused at particular biological levels (e.g., cellular, population, community), often lacking interactions among levels. Since all levels of biological organisation are sensitive to global climate change, there is a need to elucidate how different processes and hierarchical interactions will influence species fitness. Therefore, predicting the responses of communities and populations to global change will require multidisciplinary efforts across multiple levels of hierarchy, from the genetic and cellular to communities and ecosystems. Eventually, this may allow us to establish the role that acclimatisation and adaptation will play in determining marine community structures in future scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most of challenging steps in the development of coupled hydrodynamic-biogeochemical models is the combination of multiple, often incompatible computer codes that describe individual physical, chemical, biological and geological processes. This “coupling” is time-consuming, error-prone, and demanding in terms of scientific and programming expertise. The open source, Fortran-based Framework for Aquatic Biogeochemical Models addresses these problems by providing a consistent set of programming interfaces through which hydrodynamic and biogeochemical models communicate. Models are coded once to connect to FABM, after which arbitrary combinations of hydrodynamic and biogeochemical models can be made. Thus, a biogeochemical model code works unmodified within models of a chemostat, a vertically structured water column, and a three-dimensional basin. Moreover, complex biogeochemistry can be distributed over many compact, self-contained modules, coupled at run-time. By enabling distributed development and user-controlled coupling of biogeochemical models, FABM enables optimal use of the expertise of scientists, programmers and end-users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic debris is a widespread contaminant, prevalent in aquatic ecosystems across the globe. Zooplankton readily ingest microscopic plastic (microplastic, < 1 mm), which are later egested within their faecal pellets. These pellets are a source of food for marine organisms, and contribute to the oceanic vertical flux of particulate organic matter as part of the biological pump. The effects of microplastics on faecal pellet properties are currently unknown. Here we test the hypotheses that (1) faecal pellets are a vector for transport of microplastics, (2) polystyrene microplastics can alter the properties and sinking rates of zooplankton egests and, (3) faecal pellets can facilitate the transfer of plastics to coprophagous biota. Following exposure to 20.6 μm polystyrene microplastics (1000 microplastics mL–1) and natural prey (∼1650 algae mL–1) the copepod Calanus helgolandicus egested faecal pellets with significantly (P < 0.001) reduced densities, a 2.25-fold reduction in sinking rates, and a higher propensity for fragmentation. We further show that microplastics, encapsulated within egests of the copepod Centropages typicus, could be transferred to C. helgolandicus via coprophagy. Our results support the proposal that sinking faecal matter represents a mechanism by which floating plastics can be vertically transported away from surface waters.