992 resultados para Application software -- Development -- TFC
Resumo:
Dagens programvaruindustri står inför alltmer komplicerade utmaningar i en värld där programvara är nästan allstädes närvarande i våra dagliga liv. Konsumenten vill ha produkter som är pålitliga, innovativa och rika i funktionalitet, men samtidigt också förmånliga. Utmaningen för oss inom IT-industrin är att skapa mer komplexa, innovativa lösningar till en lägre kostnad. Detta är en av orsakerna till att processförbättring som forskningsområde inte har minskat i betydelse. IT-proffs ställer sig frågan: “Hur håller vi våra löften till våra kunder, samtidigt som vi minimerar vår risk och ökar vår kvalitet och produktivitet?” Inom processförbättringsområdet finns det olika tillvägagångssätt. Traditionella processförbättringsmetoder för programvara som CMMI och SPICE fokuserar på kvalitets- och riskaspekten hos förbättringsprocessen. Mer lättviktiga metoder som t.ex. lättrörliga metoder (agile methods) och Lean-metoder fokuserar på att hålla löften och förbättra produktiviteten genom att minimera slöseri inom utvecklingsprocessen. Forskningen som presenteras i denna avhandling utfördes med ett specifikt mål framför ögonen: att förbättra kostnadseffektiviteten i arbetsmetoderna utan att kompromissa med kvaliteten. Den utmaningen attackerades från tre olika vinklar. För det första förbättras arbetsmetoderna genom att man introducerar lättrörliga metoder. För det andra bibehålls kvaliteten genom att man använder mätmetoder på produktnivå. För det tredje förbättras kunskapsspridningen inom stora företag genom metoder som sätter samarbete i centrum. Rörelsen bakom lättrörliga arbetsmetoder växte fram under 90-talet som en reaktion på de orealistiska krav som den tidigare förhärskande vattenfallsmetoden ställde på IT-branschen. Programutveckling är en kreativ process och skiljer sig från annan industri i det att den största delen av det dagliga arbetet går ut på att skapa något nytt som inte har funnits tidigare. Varje programutvecklare måste vara expert på sitt område och använder en stor del av sin arbetsdag till att skapa lösningar på problem som hon aldrig tidigare har löst. Trots att detta har varit ett välkänt faktum redan i många decennier, styrs ändå många programvaruprojekt som om de vore produktionslinjer i fabriker. Ett av målen för rörelsen bakom lättrörliga metoder är att lyfta fram just denna diskrepans mellan programutvecklingens innersta natur och sättet på vilket programvaruprojekt styrs. Lättrörliga arbetsmetoder har visat sig fungera väl i de sammanhang de skapades för, dvs. små, samlokaliserade team som jobbar i nära samarbete med en engagerad kund. I andra sammanhang, och speciellt i stora, geografiskt utspridda företag, är det mera utmanande att införa lättrörliga metoder. Vi har nalkats utmaningen genom att införa lättrörliga metoder med hjälp av pilotprojekt. Detta har två klara fördelar. För det första kan man inkrementellt samla kunskap om metoderna och deras samverkan med sammanhanget i fråga. På så sätt kan man lättare utveckla och anpassa metoderna till de specifika krav som sammanhanget ställer. För det andra kan man lättare överbrygga motstånd mot förändring genom att introducera kulturella förändringar varsamt och genom att målgruppen får direkt förstahandskontakt med de nya metoderna. Relevanta mätmetoder för produkter kan hjälpa programvaruutvecklingsteam att förbättra sina arbetsmetoder. När det gäller team som jobbar med lättrörliga och Lean-metoder kan en bra uppsättning mätmetoder vara avgörande för beslutsfattandet när man prioriterar listan över uppgifter som ska göras. Vårt fokus har legat på att stöda lättrörliga och Lean-team med interna produktmätmetoder för beslutsstöd gällande så kallad omfaktorering, dvs. kontinuerlig kvalitetsförbättring av programmets kod och design. Det kan vara svårt att ta ett beslut att omfaktorera, speciellt för lättrörliga och Lean-team, eftersom de förväntas kunna rättfärdiga sina prioriteter i termer av affärsvärde. Vi föreslår ett sätt att mäta designkvaliteten hos system som har utvecklats med hjälp av det så kallade modelldrivna paradigmet. Vi konstruerar även ett sätt att integrera denna mätmetod i lättrörliga och Lean-arbetsmetoder. En viktig del av alla processförbättringsinitiativ är att sprida kunskap om den nya programvaruprocessen. Detta gäller oavsett hurdan process man försöker introducera – vare sig processen är plandriven eller lättrörlig. Vi föreslår att metoder som baserar sig på samarbete när processen skapas och vidareutvecklas är ett bra sätt att stöda kunskapsspridning på. Vi ger en översikt över författarverktyg för processer på marknaden med det förslaget i åtanke.
Resumo:
The value and benefits of user experience (UX) are widely recognized in the modern world and UX is seen as an integral part of many fields. This dissertation integrates UX and understanding end users with the early phases of software development. The concept of UX is still unclear, as witnessed by more than twenty-five definitions and ongoing argument about its different aspects and attributes. This missing consensus forms a problem in creating a link between UX and software development: How to take the UX of end users into account when it is unclear for software developers what UX stands for the end users. Furthermore, currently known methods to estimate, evaluate and analyse UX during software development are biased in favor of the phases where something concrete and tangible already exists. It would be beneficial to further elaborate on UX in the beginning phases of software development. Theoretical knowledge from the fields of UX and software development is presented and linked with surveyed and analysed UX attribute information from end users and UX professionals. Composing the surveys around the identified 21 UX attributes is described and the results are analysed in conjunction with end user demographics. Finally the utilization of the gained results is explained with a proof of concept utility, the Wizard of UX, which demonstrates how UX can be integrated into early phases of software development. The process of designing, prototyping and testing this utility is an integral part of this dissertation. The analyses show statistically significant dependencies between appreciation towards UX attributes and surveyed end user demographics. In addition, tests conducted by software developers and industrial UX designer both indicate the benefits and necessity of the prototyped Wizard of UX utility. According to the conducted tests, this utility meets the requirements set for it: It provides a way for software developers to raise their know-how of UX and a possibility to consider the UX of end users with statistical user profiles during the early phases of software development. This dissertation produces new and relevant information for the UX and software development communities by demonstrating that it is possible to integrate UX as a part of the early phases of software development.
Resumo:
Formal software development processes and well-defined development methodologies are nowadays seen as the definite way to produce high-quality software within time-limits and budgets. The variety of such high-level methodologies is huge ranging from rigorous process frameworks like CMMI and RUP to more lightweight agile methodologies. The need for managing this variety and the fact that practically every software development organization has its own unique set of development processes and methods have created a profession of software process engineers. Different kinds of informal and formal software process modeling languages are essential tools for process engineers. These are used to define processes in a way which allows easy management of processes, for example process dissemination, process tailoring and process enactment. The process modeling languages are usually used as a tool for process engineering where the main focus is on the processes themselves. This dissertation has a different emphasis. The dissertation analyses modern software development process modeling from the software developers’ point of view. The goal of the dissertation is to investigate whether the software process modeling and the software process models aid software developers in their day-to-day work and what are the main mechanisms for this. The focus of the work is on the Software Process Engineering Metamodel (SPEM) framework which is currently one of the most influential process modeling notations in software engineering. The research theme is elaborated through six scientific articles which represent the dissertation research done with process modeling during an approximately five year period. The research follows the classical engineering research discipline where the current situation is analyzed, a potentially better solution is developed and finally its implications are analyzed. The research applies a variety of different research techniques ranging from literature surveys to qualitative studies done amongst software practitioners. The key finding of the dissertation is that software process modeling notations and techniques are usually developed in process engineering terms. As a consequence the connection between the process models and actual development work is loose. In addition, the modeling standards like SPEM are partially incomplete when it comes to pragmatic process modeling needs, like light-weight modeling and combining pre-defined process components. This leads to a situation, where the full potential of process modeling techniques for aiding the daily development activities can not be achieved. Despite these difficulties the dissertation shows that it is possible to use modeling standards like SPEM to aid software developers in their work. The dissertation presents a light-weight modeling technique, which software development teams can use to quickly analyze their work practices in a more objective manner. The dissertation also shows how process modeling can be used to more easily compare different software development situations and to analyze their differences in a systematic way. Models also help to share this knowledge with others. A qualitative study done amongst Finnish software practitioners verifies the conclusions of other studies in the dissertation. Although processes and development methodologies are seen as an essential part of software development, the process modeling techniques are rarely used during the daily development work. However, the potential of these techniques intrigues the practitioners. As a conclusion the dissertation shows that process modeling techniques, most commonly used as tools for process engineers, can also be used as tools for organizing the daily software development work. This work presents theoretical solutions for bringing the process modeling closer to the ground-level software development activities. These theories are proven feasible by presenting several case studies where the modeling techniques are used e.g. to find differences in the work methods of the members of a software team and to share the process knowledge to a wider audience.
Resumo:
Corporate decision to scale Agile Software development methodologies in offshoring environment has been obstructed due to possible challenges in scaling agile as agile methodologies are regarded to be suitable for small project and co-located team only. Although model such as Agile Scaling Model (ASM) has been developed for scaling Agile with different factors, inabilities of companies to figure out challenges and addressing them lead to failure of project rather than gaining the benefits of using agile methodologies. This failure can be avoided, when scaling agile in IT offshoring environment, by determining key challenges associated in scaling agile in IT offshoring environment and then preparing strategies for addressing those key challenges. These key challenges in scaling agile with IT offshoring environment can be determined by studying issues related with Offshoring and Agile individually and also considering the positive impact of agile methodology in offshoring environment. Then, possible strategies to tackle these key challenges are developed according to the nature of individual challenges and utilizing the benefits of different agile methodologies to address individual situation. Thus, in this thesis, we proposed strategy of using hybrid agile method, which is increasing trend due to adaptive nature of Agile. Determination of the key challenges and possible strategies for tackling those challenges are supported with the survey conducted in the researched organization.
Resumo:
The rate of adoption and use of learning management systems to support teaching and learning processes in academic institutions is growing rapidly. Universities are acquiring systems with functionalities that can match with their specific needs and requirements. Moodle is one of the most popular and widely deployed learning management systems in academic institutions today. However, apart from the system, universities tend to maintain other applications for the purpose of supplementing their teaching and learning processes. This situation is similar to Lappeenranta University of Technology (LUT), which is our case study in this project. Apart from Moodle, the university also maintains other systems such as Oodi, Noppa and Uni portal for the purpose of supporting its educational activities. This thesis has two main goals. The first goal is to understand the specific role of Moodle at LUT. This information is fundamental in assessing whether Moodle is needed in the university’s current teaching and learning environment. The second aim is to provide insights to teachers and other departmental stakeholders on how Moodle can provide added value in the teaching of a software development course. In response to this, a Moodle module for a software development course is created and the underlying features are tested. Results of the constructive work proposed some improvements through (i) the use of Moodle for in-class surveys, (ii) transfer of grades from Moodle to Oodi, (iii) use of Moodle in self-study courses and MOOCs, (iv) online examinations, and (v) Moodle integrations with third party applications. The proposed items were then evaluated for their utility through interviews of five expert interviews. The final results of this work are considered useful to LUT administration and management specifically on ways that Moodle can bring changes to the university at managerial, economical and technical level. It also poses some challenges on platform innovations and research.
Resumo:
Adapting and scaling up agile concepts, which are characterized by iterative, self-directed, customer value focused methods, may not be a simple endeavor. This thesis concentrates on studying challenges in a large-scale agile software development transformation in order to enhance understanding and bring insight into the underlying factors for such emerging challenges. This topic is approached through understanding the concepts of agility and different methods compared to traditional plan-driven processes, complex adaptive theory and the impact of organizational culture on agile transformational efforts. The empirical part was conducted by a qualitative case study approach. The internationally operating software development case organization had a year of experience of an agile transformation effort during it had also undergone organizational realignment efforts. The primary data collection was conducted through semi-structured interviews supported by participatory observation. As a result the identified challenges were categorized under four broad themes: organizational, management, team dynamics and process related. The identified challenges indicate that agility is a multifaceted concept. Agile practices may bring visibility in issues of which many are embedded in the organizational culture or in the management style. Viewing software development as a complex adaptive system could facilitate understanding of the underpinning philosophy and eventually solving the issues: interactions are more important than processes and solving a complex problem, such a novel software development, requires constant feedback and adaptation to changing requirements. Furthermore, an agile implementation seems to be unique in nature, and agents engaged in the interaction are the pivotal part of the success of achieving agility. In case agility is not a strategic choice for whole organization, it seems additional issues may arise due to different ways of working in different parts of an organization. Lastly, detailed suggestions to mitigate the challenges of the case organization are provided.
Resumo:
The purpose of this study was to explore software development methods and quality assurance practices used by South Korean software industry. Empirical data was collected by conducting a survey that focused on three main parts: software life cycle models and methods, software quality assurance including quality standards, the strengths and weaknesses of South Korean software industry. The results of the completed survey showed that the use of agile methods is slightly surpassing the use of traditional software development methods. The survey also revealed an interesting result that almost half of the South Korean companies do not use any software quality assurance plan in their projects. For the state of South Korean software industry large number of the respondents thought that despite of the weakness, the status of software development in South Korea will improve in the future.
Resumo:
In today’s world because of the rapid advancement in the field of technology and business, the requirements are not clear, and they are changing continuously in the development process. Due to those changes in the requirements the software development becomes very difficult. Use of traditional software development methods such as waterfall method is not a good option, as the traditional software development methods are not flexible to requirements and the software can be late and over budget. For developing high quality software that satisfies the customer, the organizations can use software development methods, such as agile methods which are flexible to change requirements at any stage in the development process. The agile methods are iterative and incremental methods that can accelerate the delivery of the initial business values through the continuous planning and feedback, and there is close communication between the customer and developers. The main purpose of the current thesis is to find out the problems in traditional software development and to show how agile methods reduced those problems in software development. The study also focuses the different success factors of agile methods, the success rate of agile projects and comparison between traditional and agile software development.
Resumo:
Innovative gas cooled reactors, such as the pebble bed reactor (PBR) and the gas cooled fast reactor (GFR) offer higher efficiency and new application areas for nuclear energy. Numerical methods were applied and developed to analyse the specific features of these reactor types with fully three dimensional calculation models. In the first part of this thesis, discrete element method (DEM) was used for a physically realistic modelling of the packing of fuel pebbles in PBR geometries and methods were developed for utilising the DEM results in subsequent reactor physics and thermal-hydraulics calculations. In the second part, the flow and heat transfer for a single gas cooled fuel rod of a GFR were investigated with computational fluid dynamics (CFD) methods. An in-house DEM implementation was validated and used for packing simulations, in which the effect of several parameters on the resulting average packing density was investigated. The restitution coefficient was found out to have the most significant effect. The results can be utilised in further work to obtain a pebble bed with a specific packing density. The packing structures of selected pebble beds were also analysed in detail and local variations in the packing density were observed, which should be taken into account especially in the reactor core thermal-hydraulic analyses. Two open source DEM codes were used to produce stochastic pebble bed configurations to add realism and improve the accuracy of criticality calculations performed with the Monte Carlo reactor physics code Serpent. Russian ASTRA criticality experiments were calculated. Pebble beds corresponding to the experimental specifications within measurement uncertainties were produced in DEM simulations and successfully exported into the subsequent reactor physics analysis. With the developed approach, two typical issues in Monte Carlo reactor physics calculations of pebble bed geometries were avoided. A novel method was developed and implemented as a MATLAB code to calculate porosities in the cells of a CFD calculation mesh constructed over a pebble bed obtained from DEM simulations. The code was further developed to distribute power and temperature data accurately between discrete based reactor physics and continuum based thermal-hydraulics models to enable coupled reactor core calculations. The developed method was also found useful for analysing sphere packings in general. CFD calculations were performed to investigate the pressure losses and heat transfer in three dimensional air cooled smooth and rib roughened rod geometries, housed inside a hexagonal flow channel representing a sub-channel of a single fuel rod of a GFR. The CFD geometry represented the test section of the L-STAR experimental facility at Karlsruhe Institute of Technology and the calculation results were compared to the corresponding experimental results. Knowledge was gained of the adequacy of various turbulence models and of the modelling requirements and issues related to the specific application. The obtained pressure loss results were in a relatively good agreement with the experimental data. Heat transfer in the smooth rod geometry was somewhat under predicted, which can partly be explained by unaccounted heat losses and uncertainties. In the rib roughened geometry heat transfer was severely under predicted by the used realisable k − epsilon turbulence model. An additional calculation with a v2 − f turbulence model showed significant improvement in the heat transfer results, which is most likely due to the better performance of the model in separated flow problems. Further investigations are suggested before using CFD to make conclusions of the heat transfer performance of rib roughened GFR fuel rod geometries. It is suggested that the viewpoints of numerical modelling are included in the planning of experiments to ease the challenging model construction and simulations and to avoid introducing additional sources of uncertainties. To facilitate the use of advanced calculation approaches, multi-physical aspects in experiments should also be considered and documented in a reasonable detail.
Resumo:
Hur arbetar en framgångsrik programmerare? Uppgifterna att programmera datorspel och att programmera industriella, säkerhetskritiska system verkar tämligen olika. Genom en noggrann empirisk undersökning jämför och kontrasterar avhandlingen dessa två former av programmering och visar att programmering innefattar mer än teknisk förmåga. Med utgångspunkt i hermeneutisk och retorisk teori och med hjälp av både kulturvetenskap och datavetenskap visar avhandlingen att programmerarnas tradition och värderingar är grundläggande för deras arbete, och att båda sorter av programmering kan uppfattas och analyseras genom klassisk texttolkningstradition. Dessutom kan datorprogram betraktas och analyseras med hjälp av klassiska teorier om talproduktion i praktiken - program ses då i detta sammanhang som ett slags yttranden. Allt som allt förespråkar avhandlingen en återkomst till vetenskapens grunder, vilka innebär en ständig och oupphörlig cyklisk rörelse mellan att erfara och att förstå. Detta står i kontrast till en reduktionistisk syn på vetenskapen, som skiljer skarpt mellan subjektivt och objektivt, och på så sätt utgår från möjligheten att uppnå fullständigt vetande. Ofullständigt vetande är tolkandets och hermeneutikens domän. Syftet med avhandlingen är att med hjälp av exempel demonstrera programmeringens kulturella, hermeneutiska och retoriska natur.
Resumo:
This research was undertaken with an objective of studying software development project risk, risk management, project outcomes and their inter-relationship in the Indian context. Validated instruments were used to measure risk, risk management and project outcome in software development projects undertaken in India. A second order factor model was developed for risk with five first order factors. Risk management was also identified as a second order construct with four first order factors. These structures were validated using confirmatory factor analysis. Variation in risk across categories of select organization / project characteristics was studied through a series of one way ANOVA tests. Regression model was developed for each of the risk factors by linking it to risk management factors and project /organization characteristics. Similarly regression models were developed for the project outcome measures linking them to risk factors. Integrated models linking risk factors, risk management factors and project outcome measures were tested through structural equation modeling. Quality of the software developed was seen to have a positive relationship with risk management and negative relationship with risk. The other outcome variables, namely time overrun and cost over run, had strong positive relationship with risk. Risk management did not have direct effect on overrun variables. Risk was seen to be acting as an intervening variable between risk management and overrun variables.
Resumo:
This paper addresses the need for accurate predictions on the fault inflow, i.e. the number of faults found in the consecutive project weeks, in highly iterative processes. In such processes, in contrast to waterfall-like processes, fault repair and development of new features run almost in parallel. Given accurate predictions on fault inflow, managers could dynamically re-allocate resources between these different tasks in a more adequate way. Furthermore, managers could react with process improvements when the expected fault inflow is higher than desired. This study suggests software reliability growth models (SRGMs) for predicting fault inflow. Originally developed for traditional processes, the performance of these models in highly iterative processes is investigated. Additionally, a simple linear model is developed and compared to the SRGMs. The paper provides results from applying these models on fault data from three different industrial projects. One of the key findings of this study is that some SRGMs are applicable for predicting fault inflow in highly iterative processes. Moreover, the results show that the simple linear model represents a valid alternative to the SRGMs, as it provides reasonably accurate predictions and performs better in many cases.
Resumo:
The Perspex Machine arose from the unification of computation with geometry. We now report significant redevelopment of both a partial C compiler that generates perspex programs and of a Graphical User Interface (GUI). The compiler is constructed with standard compiler-generator tools and produces both an explicit parse tree for C and an Abstract Syntax Tree (AST) that is better suited to code generation. The GUI uses a hash table and a simpler software architecture to achieve an order of magnitude speed up in processing and, consequently, an order of magnitude increase in the number of perspexes that can be manipulated in real time (now 6,000). Two perspex-machine simulators are provided, one using trans-floating-point arithmetic and the other using transrational arithmetic. All of the software described here is available on the world wide web. The compiler generates code in the neural model of the perspex. At each branch point it uses a jumper to return control to the main fibre. This has the effect of pruning out an exponentially increasing number of branching fibres, thereby greatly increasing the efficiency of perspex programs as measured by the number of neurons required to implement an algorithm. The jumpers are placed at unit distance from the main fibre and form a geometrical structure analogous to a myelin sheath in a biological neuron. Both the perspex jumper-sheath and the biological myelin-sheath share the computational function of preventing cross-over of signals to neurons that lie close to an axon. This is an example of convergence driven by similar geometrical and computational constraints in perspex and biological neurons.