972 resultados para Apical disruption
Proteomic analysis of normal and malignant prostate tissue to identify novel proteins lost in cancer
Resumo:
BACKGROUND. Alterations of important protein pathways, including loss of prostate secretory granules, and disruption of the prostatic secretory pathway have been identified as early events in malignancy. In this study, proteomics was used to map the differences in protein expression between normal and malignant prostate tissues and to identify and analyze differentially expressed proteins in human prostate tissue with particular regard to the proteins lost in malignancy. METHODS. Small quantities of normal and malignant prostate tissue were taken fresh from 34 radical prostatectomy cases. After histological examination, proteins were solubilized from selected tissues and separated using two-dimensional electrophoresis. Using image analysis, the proteome of normal and malignant tissues were mapped and differentially expressed proteins (present in normal and absent in malignant tissue) were identified and subsequently analyzed using peptide mass finger printing and N-terminal sequencing. Western blotting and immunohistochemistry were performed to examine expression profiles and tissue localization of candidate proteins. RESULTS. Comparison of protein maps of normal and malignant prostate were used to identify 20 proteins which were lost in malignant transformation, including prostate specific antigen (PSA), alpha-l antichymotrypsin (ACT), haptoglobin, and lactoylglutathione lyase. Three of the 20 had not previously been reported in human prostate tissue (Ubiquitin-like NEDD8, calponin, and a follistatin-related protein). Western blotting confirmed differences in the expression profiles of NEDD8 and calponin, and immunohistochemistry demonstrated differences in the cellular localization of these two proteins in normal and malignant prostate glands. CONCLUSIONS. The expression of NEDD8, calponin, and the follistatin-related protein in normal prostate tissues is a novel finding and the role of these important functional proteins in normal prostate and their loss or reduced expression in prostate malignancy warrants further investigations. (C) 2002 Wiley-Liss, Inc.
Resumo:
The cholinergic system is thought to play an important role in hippocampal-dependent learning and memory. However, the mechanism of action of the cholinergic system in these actions in not well understood. Here we examined the effect of muscarinic receptor stimulation in hippocampal CA1 pyramidal neurons using whole-cell recordings in acute brain slices coupled with high-speed imaging of intracellular calcium. Activation of muscarinic acetylcholine receptors by synaptic stimulation of cholinergic afferents or application of muscarinic agonist in CA1 pyramidal neurons evoked a focal rise in free calcium in the apical dendrite that propagated as a wave into the soma and invaded the nucleus. The calcium rise to a single action potential was reduced during muscarinic stimulation. Conversely, the calcium rise during trains of action potentials was enhanced during muscarinic stimulation. The enhancement of free intracellular calcium was most pronounced in the soma and nuclear regions. In many cases, the calcium rise was distinguished by a clear inflection in the rising phase of the calcium transient, indicative of a regenerative response. Both calcium waves and the amplification of action potential-induced calcium transients were blocked the emptying of intracellular calcium stores or by antagonism of inositol 1,4,5-trisphosphate receptors with heparin or caffeine. Ryanodine receptors were not essential for the calcium waves or enhancement of calcium responses. Because rises in nuclear calcium are known to initiate the transcription of novel genes, we suggest that these actions of cholinergic stimulation may underlie its effects on learning and memory.
Resumo:
1. In vivo studies have shown that the low-affinity 75 kDa neurotrophin receptor (p75NTR) is involved in axotomy-induced cell death of sensory and motor neurons. To further examine the importance of p75NTR in mediating neuronal death in vivo , we examined the effect of axotomy in the p75NTR-knockout mouse, which has a disrupted ligand-binding domain. 2. The extent of sensory and motor neuron loss in the p75NTR-knockout mouse following axotomy was not significantly different to that in wild-type mice. This suggests that disruption of the ligand-binding domain is insufficient to block the cell death process in axotomized neurons. 3. Immunohistochemical studies showed that axotomized neurons continue to express this mutant receptor with its intracellular death-signalling moiety intact. 4. Treatment with antisense oligonucleotides targeted against p75NTR resulted in significant reduction in the loss of axotomized neurons in the knockout mouse. 5. These data suggest that the intracellular domain of p75NTR is essential for death-signalling and that p75NTR can signal apoptosis, despite a disrupted ligand-binding domain.
Resumo:
Dysgraphia (agraphia) is a common feature of posterior cortical atrophy (PCA). However, detailed analyses of these spelling and writing impairments are infrequently conducted. LM is a 59-year-old woman with dysgraphia associated with PCA. She presented with a two-year history of decline in her writing and dressmaking skills. A 3D T-1-weighted MRI scan confirmed selective bi-parietal atrophy, with relative sparing of the hippocampi and other cortical regions. Analyses of LM's preserved and impaired spelling abilities indicated mild physical letter distortions and a significant spelling deficit characterised by letter substitutions, insertions, omissions, and transpositions that was systematically sensitive to word length while insensitive to real word versus nonword category, word frequency, regularity, imagery, grammatical class and ambiguity. Our findings suggest a primary graphemic buffer disorder underlies LM's spelling errors, possibly originating from disruption to the operation of a fronto-parietal network implicated in verbal working memory.
Resumo:
Slumping of hardsetting seedbeds upon wetting has not been extensively studied despite the likelihood that it determines the physical properties after drying. Slumping results from processes similar to those involved in crusting except that overburden pressure can dominate rather than rainfall kinetic energy. Only a few studies have dealt with the morphological description of slumping. To simulate different climatic and management conditions, repacked seedbeds of a hardsetting sandy-loam soil were subjected to a range of wetting conditions, e.g. capillary rise, immersion, and rainfall simulation. Slumping processes were characterized using qualitative and quantitative micromorphological observations of polished blocks and thin sections from resin-impregnated samples. A morphogenetical framework was proposed to help description of the complex associations of processes which can lead to structural collapse (crusting and slumping) on wetting. Three main stages were considered, i.e. aggregate disruption or abrasion, relocation of the released material, and compaction. In the hardsetting material studied here, structural collapse under slow wetting occurred at the bottom of cores due to aggregate coalescence under overburden pressure. Coalescence required aggregate cohesion being reduced by microcracking; therefore, it differed from the coalescence previously described in unstable silty loam soils where microcracking was not necessary for aggregates to coalesce. Macroporosity decreased most strongly under fast wetting due to physical dispersion and aggregate breakdown. Under simulated rainfall, compaction by raindrops could not be distinguish from aggregate breakdown. The role of overburden pressure and of rainfall kinetic energy remains to be stated; new data are required including measurement of total porosity in the initial, wet, and dry states. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This article attempts to elucidate one of the mechanisms that link trade barriers, in the form of port costs, and subsequent growth and regional inequality. Prior attention has focused on inland or link costs, but port costs can be considered as a further barrier to enhancing trade liberalization and growth. In contrast to a highway link, congestion at a port may have severe impacts that are spread over space and time whereas highway link congestion may be resolved within several hours. Since a port is part of the transportation network, any congestion/disruption is likely to ripple throughout the hinterland. In this sense, it is important to model properly the role nodal components play in the context of spatial models and international trade. In this article, a spatial computable general equilibrium (CGE) model that is integrated to a transport network system is presented to simulate the impacts of increases in port efficiency in Brazil. The role of ports of entry and ports of exit are explicitly considered to grasp the holistic picture in an integrated interregional system. Measures of efficiency for different port locations are incorporated in the calibration of the model and used as the benchmark in our simulations. Three scenarios are evaluated: (1) an overall increase in port efficiency in Brazil to achieve international standards; (2) efficiency gains associated with decentralization in port management in Brazil; and (3) regionally differentiated increases in port efficiency to reach the boundary of the national efficiency frontier.
Resumo:
We have identified truncating mutations in the human DLG3 ( neuroendocrine dlg) gene in 4 of 329 families with moderate to severe X-linked mental retardation. DLG3 encodes synapse-associated protein 102 (SAP102), a member of the membrane-associated guanylate kinase protein family. Neuronal SAP102 is expressed during early brain development and is localized to the postsynaptic density of excitatory synapses. It is composed of three amino-terminal PDZ domains, an src homology domain, and a carboxyl-terminal guanylate kinase domain. The PDZ domains interact directly with the NR2 subunits of the NMDA glutamate receptor and with other proteins responsible for NMDA receptor localization, immobilization, and signaling. The mutations identified in this study all introduce premature stop codons within or before the third PDZ domain, and it is likely that this impairs the ability of SAP102 to interact with the NMDA receptor and/or other proteins involved in downstream NMDA receptor signaling pathways. NMDA receptors have been implicated in the induction of certain forms of synaptic plasticity, such as long-term potentiation and long-term depression, and these changes in synaptic efficacy have been proposed as neural mechanisms underlying memory and learning. The disruption of NMDA receptor targeting or signaling, as a result of the loss of SAP102, may lead to altered synaptic plasticity and may explain the intellectual impairment observed in individuals with DLG3 mutations.
Resumo:
Perianth development is specifically disrupted in mutants of the PETAL LOSS (PTL) gene, particularly petal initiation and orientation. We have cloned PTL and show that it encodes a plant-specific trihelix transcription factor, one of a family previously known only as regulators of light-controlled genes. PTL transcripts were detected in the early-developing flower, in four zones between the initiating sepals and in their developing margins. Strong misexpression of PTL in a range of tissues universally results in inhibition of growth, indicating that its normal role is to suppress growth between initiating sepals, ensuring that they remain separate. Consistent with this, sepals are sometimes fused in ptl single mutants, but much more frequently in double mutants with either of the organ boundary genes cup-shaped cotyledon1 or 2. Expression of PTL within the newly arising sepals is apparently prevented by the PINOID auxin-response gene. Surprisingly, PTL expression could not be detected in petals during the early stages of their development, so petal defects associated with PTL loss of function may be indirect, perhaps involving disruption to signalling processes caused by overgrowth in the region. PTL-driven reporter gene expression was also detected at later stages in the margins of expanding sepals, petals and stamens, and in the leaf margins; thus, PTL may redundantly dampen lateral outgrowth of these organs, helping define their final shape.
Resumo:
The reconstitution of membrane proteins into liposomes is a useful tool to prepare antigenic components that induce immunity. We have investigated the influence of the dipalmitoylphosphatidylcholine (DPPC)/cholesterol molar ratio on the incorporation of a GPI-protein from Leishmania amazonensis on liposomes and Langmuir monolayers. The latter system is a well behaved and practical model, for understanding the effect of variables such as surface composition and lipid packing on protein incorporation. We have found that the DPPC/cholesterol molar ratio significantly alters the incorporation of the GPI-protein. In the absence of cholesterol, reconstitution is more difficult and proteoliposomes cannot be prepared, which we correlated with disruption of the DPPC layer. Our results provide important information that Could be employed in the development of a vaccine system for this disease or be used to produce other GPI-systems for biotechnological application. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
Diadromous freshwater shrimps are exposed to brackish water both as an obligatory part of their larval life cycle and during adult reproductive migration; their well-developed osmoregulatory ability is crucial to survival in such habitats. This study examines gill microsomal Na,K-ATPase (K-phosphatase activity) kinetics and protein profiles in the freshwater shrimp Macrobrachium amazonicum when in fresh water and after 10-days of acclimation to brackish water (21 parts per thousand salinity), as well as potential routes of Na(+) uptake across the gill epithelium in fresh water. On acclimation, K-phosphatase activity decreases 2.5-fold, Na,K-ATPase alpha-subunit expression declines, total protein expression pattern is markedly altered, and enzyme activity becomes redistributed into different density membrane fractions, possibly reflecting altered vesicle trafficking between the plasma membrane and intracellular compartments. Ultrastructural analysis reveals an intimately coupled pillar cell-septal cell architecture and shows that the cell membrane interfaces between the external medium and the hemolymph are greatly augmented by apical pillar cell evaginations and septal cell inviginations, respectively. These findings ire discussed regarding the putative movement of Na(+) across the pillar cell interfaces and into the hemolymph via the septal cells, powered by the Na,K-ATPase located in their invaginations. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In this work we report the interaction effects of the local anesthetic dibucaine (DBC) with lipid patches in model membranes by Atomic Force Microscopy (AFM). Supported lipid bilayers (egg phosphatidylcholine, EPC and dimyristoylphosphatidylcholine, DMPQ were prepared by fusion of unilamellar vesicles on mica and imaged in aqueous media. The AFM images show irregularly distributed and sized EPC patches on mica. On the other hand DMPC formation presents extensive bilayer regions on top of which multibilayer patches are formed. In the presence of DBC we observed a progressive disruption of these patches, but for DMPC bilayers this process occurred more slowly than for EPC. In both cases, phase images show the formation of small structures on the bilayer surface suggesting an effect on the elastic properties of the bilayers when DBC is present. Dynamic surface tension and dilatational surface elasticity measurements of EPC and DMPC monolayers in the presence of DBC by the pendant drop technique were also performed, in order to elucidate these results. The curve of lipid monolayer elasticity versus DBC concentration, for both EPC and DMPC cases, shows a maximum for the surface elasticity modulus at the same concentration where we observed the disruption of the bilayer by AFM. Our results suggest that changes in the local curvature of the bilayer induced by DBC could explain the anesthetic action in membranes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We evaluate osmotic and chloride (Cl(-)) regulatory capability in the diadromous shrimp Macrobrachium amazonicum, and the accompanying alterations in hemolymph osmolality and [Cl(-)], gill Na(+)/K(+)-ATPase activity, and expression of gill Na(+)/K(+)-ATPase alpha-subunit and V-ATPase B subunit mRNA during salinity (S) acclimation. We also characterize V-ATPase kinetics and the organization of transport-related membrane systems in the gill epithelium. Macrobrachium amazonicum strongly hyper-regulates hemolymph osmolality and [Cl(-)] in freshwater and in salinities up to 25 parts per thousand S. During a 10-day acclimation period to 25 parts per thousand S, hemolymph became isosmotic and hypo-chloremic after 5 days, [Cl(-)] alone remaining hyporegulated thereafter. Gill Na(+)/K(+)-ATPase alpha-subunit mRNA expression increased 6.5 times initial values after 1 h, then decreased to 3 to 4 times initial values by 24 h and to 1.5 times initial values after 10 days at 25 parts per thousand S. This increased expression was accompanied by a sharp decrease at 5 h then recovery of initial Na(+)/K(+)-ATPase activity within 24 h, declining again after 5 days, which suggests transient Cl(-) secretion. V-ATPase B-subunit mRNA expression increased 1.5-fold within 1 h, then reduced sharply to 0.3 times initial values by 5 h, and remained unchanged for the remainder of the 10-day period. V-ATPase activity dropped sharply and was negligible after a 10-day acclimation period to 21 parts per thousand S, revealing a marked downregulation of ion uptake mechanisms. The gill epithelium consists of thick, apical pillar cell flanges, the perikarya of which are coupled to an intralamellar septum. These two cell types respectively exhibit extensive apical evaginations and deep membrane invaginations, both of which are associated with numerous mitochondria, characterizing an ion transporting epithelium. These changes in Na(+)/K(+)- and V-ATPase activities and in mRNA expression during salinity acclimation appear to underpin ion uptake and Cl(-) secretion by the palaemonid shrimp gill.
Resumo:
The structural determinants of myotoxicity of bothropstoxin-I (BthTX-I), a Lys49 phospholipase A(2) from Bothrops jararacussu venom, were studied by measuring the resting membrane potential in the mouse phrenic nerve-diaphragm preparation. This method proved to be around 100-fold more sensitive than the creatine kinase release assay, and was used to evaluate a total of 31 site-directed BthTX-I alanine scanning mutants. Mutants that reduced the resting membrane potential were located in a surface patch defined by residues in the C-terminal loop (residues 115-129), positions 37-39 in the membrane interfacial recognition surface (Y46 and K54), and residue K93. These results expand the known structural determinants of the biological activity as evaluated by previous creatine kinase release experiments. Furthermore, a strong correlation is observed between the structural determinants of sarcolemma depolarization and calcium-independent disruption of liposome membranes, suggesting that a common mechanism of action underlies the permeabilization of the biological and model membranes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Establishment of the left-right axis is a fundamental process of vertebrate embryogenesis. Failure to develop left-right asymmetry leads to incorrect positioning and morphogenesis of numerous internal organs, and is proposed to underlie the etiology of several common cardiac malformations. The transcriptional modulator Cited2 is essential for embryonic development: Cited2-null embryos die during gestation with profound developmental abnormalities, including cardiac malformations, exencephaly and adrenal agenesis. Cited2 is also required for normal establishment of the left-right axis; we demonstrate that abnormal heart looping and right atrial and pulmonary isomerism are consistent features of the left-right-patterning defect. We show by gene expression analysis that Cited2 acts upstream of Nodal, Lefty2 and Pitx2 in the lateral mesoderm, and of Lefty1 in the presumptive floor plate. Although abnormal left-right patterning has a major impact on the cardiac phenotype in Cited2-null embryos, laterality defects are only observed in a proportion of these embryos. We have therefore used a combination of high-resolution imaging and three-dimensional (3D) modeling to systematically document the full spectrum of Cited2-associated cardiac defects. Previous studies have focused on the role of Cited2 in cardiac neural crest cell development, as Cited2 can bind the transcription factor Tfap2, and thus affect the expression of Erbb3 in neural crest cells. However, we have identified Cited2-associated cardiac defects that cannot be explained by laterality or neural crest abnormalities. In particular, muscular ventricular septal defects and reduced cell density in the atrioventricular (AV) endocardial cushions are evident in Cited2-null embryos. As we found that Cited2 expression tightly correlated with these sites, we believe that Cited2 plays a direct role in development of the AV canal and cardiac septa. We therefore propose that, in addition to the previously described reduction of cardiac neural crest cells, two other distinct mechanisms contribute to the spectrum of complex cardiac defects in Cited2-null mice; disruption of normal left-right patterning and direct loss of Cited2 expression in cardiac tissues.
Resumo:
Research documents related to the morphology and function of style branches and stigmatic surface of Asteraceae are still rather few, and the literature reports are thus controversial. We report in the present study that the stigmatic surfaces of two non-related species of Asteraceae (Lessingianthus grandiflorus and Lucilia lycopodioides) have features of semidry stigmas. Sporodermis of both species was also analyzed so that we could understand how the stigmatic surface works during pollen deposition and rehydration. Stylar branches and pollen grains (sporodermis) were studied using scanning and transmission electron microscopy (SEM and TEM) and histochemistry techniques. The inner and marginal bands of stylar branches in these species display intermediary features between the dry and wet types of stigma: the cuticle characterizes the dry stigma and cells with secretory activity characterize the wet stigma; these showed differences from what has been described to the Asteraceae family, where stigmatic surface of species from several tribes is considered dry. Pollen grains are medium-size to large with exine ornamentation (echinate and echinolophate) and abundant secretion which latter characterizes pollenkitt. We can assume that two processes might help pollen grain hydration on stigmatic surface in Lessingianthus grandiflorus and Lucilia lycopodioides: (1) the presence of pollenkitt, as observed in the secretory content inside exine cavities and around pollen grains; and (2) the secretory activity of stigmatic surface cells, whose secretion accumulates among intercellular and subcuticular spaces and leads to cuticle disruption during the floral receptive phase. Our results suggest that ultrastructural and histochemical studies should be considered when describing stigmatic surface and that the ""semidry"" feature within Asteraceae should be investigated still more in detail, so that the taxonomic or adaptation value of this trait in the family can be verified. (C) 2010 Elsevier GmbH. All rights reserved.