934 resultados para Anti inflammatory drugs
Resumo:
Background In addition to its anticoagulant properties, heparin has anti-inflammatory effects, the molecular and mechanistic bases of which are incompletely defined. AIMS The current studies were designed to test the hypothesis that heparin abrogates the expression or function of leucocyte-endothelial adherence molecules which are fundamental to the acute inflammatory response. Methods The effects of heparin on tumour necrosis factor alpha (TNF-¿) induced leucocyte rolling, adhesion, and migration as well as vascular permeability were assessed in rat mesenteric venules using intravital microscopy. Expression of adhesion molecules was quantitated using a double radiolabelled monoclonal antibody (mAb) binding technique in vivo (P-selectin, intercellular cell adhesion molecule type 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1)) or flow cytometry (CD11a, CD11b, and L-selectin). Ex vivo binding of heparin to neutrophils was assessed by flow cytometry. RESULTS TNF-alpha induced a significant increase in leucocyte rolling, adhesion, and migration, and vascular permeability, coincident with a significant increase in expression of P-selectin, ICAM-1, and VCAM-1. Ex vivo assessment of blood neutrophils showed significant upregulation of CD11a and CD11b and significant downregulation of L-selectin within five hours of TNF-¿ administration. Heparin pretreatment significantly attenuated leucocyte rolling, adhesion, and migration but did not affect expression of cell adhesion molecules or vascular permeability elicited by TNF-¿ administration. Binding of heparin was significantly increased on blood neutrophils obtained five hours after TNF-¿ administration. Preincubation with an anti-CD11b mAb but not with an anti-CD11a or anti-L-selectin antibody significantly diminished heparin binding ex vivo.
Resumo:
Abstract - Cannabis: what are the risks ? Cannabinoids from cannabis have a dual use and display often opposite pharmacological properties depending on the circumstances of use and the administered dose. Cannabinoids constitute mainly a recreative or addictive substance, but also a therapeutic drug. They can be either neurotoxic or neuroprotector, carcinogenic or an anti-cancer drug, hyperemetic or antiemetic, pro-inflammatory or anti-inflammatory... Improvement in in-door cultivation techniques and selection of high yield strains have resulted in a steadily increase of THC content. Cannabis is the most frequently prohibited drug used in Switzerland and Western countries. About half of teenagers have already experimented cannabis consumption. About 10% of cannabis users smoke it daily and can be considered as cannabis-dependant. About one third of these cannabis smokers are chronically intoxicated. THC, the main psychoactive drug interacts with the endocannnabinoid system which is made of cellular receptors, endogenous ligands and a complex intra-cellular biosynthetic, degradation and intra-cellular messengers machinery. The endocannabinoid system plays a major role in the fine tuning of the nervous system. It is thought to be important in memory, motor learning, and synaptic plasticity. At psychoactive dose, THC impairs psychomotor and neurocognitive performances. Learning and memory abilities are diminished. The risk to be responsible of a traffic car accident is slightly increased after administration of cannabis alone and strongly increased after combined use of alcohol and cannabis. With the exception of young children, cannabis intake does not lead to potentially fatal intoxication. However, cannabis exposure can act as trigger for cardiovascular accidents in rare vulnerable people. Young or vulnerable people are more at risk to develop a psychosis at adulthood and/or to become cannabis-dependant. Epidemiological studies have shown that the risk to develop a schizophrenia at adulthood is increased for cannabis smokers, especially for those who are early consumers. Likewise for the risk of depression and suicide attempt. Respiratory disease can be worsen after cannabis smoking. Pregnant and breast-feeding mothers should not take cannabis because THC gets into placenta and concentrates in breast milk. The most sensitive time-period to adverse side-effects of cannabis starts from foetus and extends to adolescence. The reason could be that the endocannabinoid system, the main target of THC, plays a major role in the setup of neuronal networks in the immature brain. The concomitant use of other psychoactive drugs such as alcohol, benzodiazepines or cocaine should be avoided because of possible mutual interactions. Furthermore, it has been demonstrated that a cross-sensitisation exists between most addictive drugs at the level of the brain reward system. Chronic use of cannabis leads to tolerance and withdrawals symptoms in case of cannabis intake interruption. Apart from the aforementioned unwanted side effects, cannabis displays useful and original medicinal properties which are currently under scientific evaluation. At the moment the benefit/risk ratio is not yet well assessed. Several minor phytocannabinoids or synthetic cannabinoids devoid of psychoactive properties could find their way in the modern pharmacopoeia (e.g. ajulemic acid). For therapeutic purposes, special cannabis varieties with unique cannabinoids composition (e.g. a high cannabidiol content) are preferred over those which are currently used for recreative smoking. The administration mode also differs in such a way that inhalation of carcinogenic pyrolytic compounds resulting from cannabis smoking is avoided. This can be achieved by inhaling cannabis vapors at low temperature with a vaporizer device. Résumé Les cannabinoïdes contenus dans la plante de cannabis ont un double usage et possèdent des propriétés opposées suivant les circonstances et les doses employées. Les cannabinoïdes, essentiellement drogue récréative ou d'abus pourraient, pour certains d'entre eux, devenir des médicaments. Selon les conditions d'utilisation, ils peuvent être neurotoxiques ou neuroprotecteurs, carcinogènes ou anticancéreux, hyper-émétiques ou antiémétiques, pro-inflammatoires ou anti-inflammatoires... Les techniques de culture sous serre indoor ainsi que la sélection de variétés de cannabis à fort potentiel de production ont conduit à un accroissement notable des taux de THC. Le cannabis est la drogue illégale la plus fréquemment consommée en Suisse et ailleurs dans le monde occidental. Environ la moitié des jeunes ont déjà expérimenté le cannabis. Environ 10 % des consommateurs le fument quotidiennement et en sont devenus dépendants. Un tiers de ces usagers peut être considéré comme chroniquement intoxiqué. Le THC, la principale substance psychoactive du cannabis, interagit avec le "système endocannabinoïde". Ce système est composé de récepteurs cellulaires, de ligands endogènes et d'un dispositif complexe de synthèse, de dégradation, de régulation et de messagers intra-cellulaires. Le système endocannabinoïde joue un rôle clé dans le réglage fin du système nerveux. Les endocannabinoïdes régulent la mémorisation, l'apprentissage moteur et la plasticité des liaisons nerveuses. À dose psychoactive, le THC réduit les performances psychomotrices et neurocognitives. Les facultés d'apprentissage et de mémorisation sont diminuées. Le risque d'être responsable d'un accident de circulation est augmenté après prise de cannabis, et ceci d'autant plus que de l'alcool aura été consommé parallèlement. À l'exception des jeunes enfants, la consommation de cannabis n'entraîne pas de risque potentiel d'intoxication mortelle. Toutefois, le cannabis pourrait agir comme facteur déclenchant d'accident cardiovasculaire chez de rares individus prédisposés. Les individus jeunes, et/ou vulnérables ont un risque significativement plus élevé de développer une psychose à l'âge adulte ou de devenir dépendant au cannabis. Des études épidémiologiques ont montré que le risque de développer une schizophrénie à l'âge adulte était augmenté pour les consommateurs de cannabis et ceci d'autant plus que l'âge de début de consommation était précoce. Il en va de même pour le risque de dépression. Les troubles respiratoires pourraient être exacerbés par la prise de cannabis. Les femmes enceintes et celles qui allaitent ne devraient pas consommer de cannabis car le THC traverse la barrière hémato-placentaire, en outre, il se concentre dans le lait maternel. La période de la vie la plus sensible aux effets néfastes du cannabis correspond à celle allant du foetus à l'adolescent. Le système endocannabinoïde sur lequel agit le THC serait en effet un acteur majeur orchestrant le développement des réseaux neuronaux dans le cerveau immature. La prise concomitante d'autres psychotropes comme l'alcool, les benzodiazépines ou la cocaïne conduit à des renforcements mutuels de leurs effets délétères. De plus, il a été montré l'existence d'une sensibilité croisée pour la majorité des psychotropes qui agissent sur le système de la récompense, le cannabis y compris, ce qui augmente ainsi le risque de pharmacodépendance. La prise régulière de doses élevées de cannabis entraîne l'apparition d'une tolérance et de symptômes de sevrage discrets à l'arrêt de la consommation. À part les effets négatifs mentionnés auparavant, le cannabis possède des propriétés médicales originales qui sont l'objet d'études attentives. Plusieurs cannabinoïdes mineurs naturels ou synthétiques, comme l'acide ajulémique, pourraient trouver un jour une place dans la pharmacopée. En usage thérapeutique, des variétés particulières de cannabis sont préférées, par exemple celles riches en cannabidiol non psychoactif. Le mode d'administration diffère de celui utilisé en mode récréatif. Par exemple, la vaporisation des cannabinoïdes à basse température est préférée à l'inhalation du "joint".
Resumo:
Histone deacetylases (HDACs) control gene expression by deacetylating histones and nonhistone proteins. HDAC inhibitors (HDACi) are powerful anticancer drugs that exert anti-inflammatory and immunomodulatory activities. We recently reported a proof-of-concept study demonstrating that HDACi increase susceptibility to bacterial infections in vivo. Yet, still little is known about the effects of HDACi on antimicrobial innate immune defenses. Here we show that HDACi belonging to different chemical classes inhibit at multiple levels the response of macrophages to bacterial infection. HDACi reduce the phagocytosis and the killing of Escherichia coli and Staphylococcus aureus by macrophages. In line with these findings, HDACi decrease the expression of phagocytic receptors and inhibit bacteria-induced production of reactive oxygen and nitrogen species by macrophages. Consistently, HDACi impair the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits and inducible nitric oxide synthase. These data indicate that HDACi have a strong impact on critical antimicrobial defense mechanisms in macrophages.
Resumo:
Background : Numerous studies have shown that immune cells infiltrate the spinal cord after peripheral nerve injury and that they play a major contribution to sensory hypersensitivity in rodents. In particular, the role of monocyte-derived cells and T lymphocytes seems to be prominent in this process. This exciting new perspective in research on neuropathic pain opens many different areas of work, including the understanding of the function of these cells and how they impact on neural function. However, no systematic description of the time course or cell types that characterize this infiltration has been published yet, although this seems to be the rational first step of an overall understanding of the phenomenon. Objective : Describe the time course and cell characteristics of T lymphocyte infiltration in the spinal cord in the Spared Nerve Injury (SNI) model of neuropathic pain in rats. Methods : Collect of lumbar spinal cords of rats at days 2, 7, 21 and 40 after SNI or sham operation (n=4). Immunofluorescence detecting different proteins of T cell subgroups (CD2+CD4+, CD2+CD8+, Th1 markers, Th2 markers, Th17 markers). Quantification of the infiltration rate of the different subgroups. Expected results : First, we expect to see an infiltration of T cells in the spinal cord ipsilateral to nerve injury, higher in SNI rats than in sham animals. Second, we anticipate that different subtypes of T cells penetrate at different time points. Finally, the number of T lymphocytes are expected to decrease at the latest time point, showing a resolution of the process underlying their infiltrating the spinal cord in the first place. Impact : A systematic description of the infiltration of T cells in the spinal cord after peripheral nerve injury is needed to have a better understanding of the role of immune cells in neuropathic pain. The time course that we want to establish will provide the scientific community with new perspectives. First, it will confirm that T cells do indeed infiltrate the spinal cord after SNI in rats. Second, the type of T cells infiltrating at different time points will give clues about their function, in particular their inflammatory or anti-inflammatory profile. From there on, other studies could be lead, investigating the functional side of the specific subtypes put to light by us. Ultimately, this could lead to the discovery of new drugs targeting T cells or their infiltration, in the hope of improving neuropathic pain.
Resumo:
The molecular chaperone Hsp90-dependent proteome represents a complex protein network of critical biological and medical relevance. Known to associate with proteins with a broad variety of functions termed clients, Hsp90 maintains key essential and oncogenic signalling pathways. Consequently, Hsp90 inhibitors are being tested as anti-cancer drugs. Using an integrated systematic approach to analyse the effects of Hsp90 inhibition in T-cells, we quantified differential changes in the Hsp90-dependent proteome, Hsp90 interactome, and a selection of the transcriptome. Kinetic behaviours in the Hsp90-dependent proteome were assessed using a novel pulse-chase strategy (Fierro-Monti et al., accompanying article), detecting effects on both protein stability and synthesis. Global and specific dynamic impacts, including proteostatic responses, are due to direct inhibition of Hsp90 as well as indirect effects. As a result, a decrease was detected in most proteins that changed their levels, including known Hsp90 clients. Most likely, consequences of the role of Hsp90 in gene expression determined a global reduction in net de novo protein synthesis. This decrease appeared to be greater in magnitude than a concomitantly observed global increase in protein decay rates. Several novel putative Hsp90 clients were validated, and interestingly, protein families with critical functions, particularly the Hsp90 family and cofactors themselves as well as protein kinases, displayed strongly increased decay rates due to Hsp90 inhibitor treatment. Remarkably, an upsurge in survival pathways, involving molecular chaperones and several oncoproteins, and decreased levels of some tumour suppressors, have implications for anti-cancer therapy with Hsp90 inhibitors. The diversity of global effects may represent a paradigm of mechanisms that are operating to shield cells from proteotoxic stress, by promoting pro-survival and anti-proliferative functions. Data are available via ProteomeXchange with identifier PXD000537.
Resumo:
Peroxisome proliferator-activated receptor alpha (PPARalpha)is a nuclear receptor for various fatty acids, eicosanoids, and hypolipidemic drugs. In the presence of ligand, this transcription factor increases expression of target genes that are primarily associated with lipid homeostasis. We have previously reported PPARalpha as a nuclear receptor of the inflammatory mediator leukotriene B(4) (LTB(4)) and demonstrated an anti-inflammatory function for PPARalpha in vivo (Devchand, P. R., Keller, H., Peters, J. M., Vazquez, M., Gonzalez, F. J., and Wahli, W. (1996) Nature 384, 39-43). LTB(4) also has a cell surface receptor (BLTR) that mediates proinflammatory events, such as chemotaxis and chemokinesis (Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y., and Shimizu, T. (1997) Nature 387, 620-624). In this study, we report on chemical probes that differentially modulate activity of these two LTB(4) receptors. The compounds selected were originally characterized as synthetic BLTR effectors, both agonists and antagonists. Here, we evaluate the compounds as effectors of the three PPAR isotypes (alpha, beta, and gamma) by transient transfection assays and also determine whether the compounds are ligands for these nuclear receptors by coactivator-dependent receptor ligand interaction assay, a semifunctional in vitro assay. Because the compounds are PPARalpha selective, we further analyze their potency in a biological assay for the PPARalpha-mediated activity of lipid accumulation. These chemical probes will prove invaluable in dissecting processes that involve nuclear and cell surface LTB(4) receptors and also aid in drug discovery programs.
Resumo:
Pro-inflammatory cytokines and high-sensitive C-reactive protein (hs-CRP) are associated with increased risk for cardiovascular disease. Low-dose aspirin for CV prevention is reported to have anti-inflammatory effects. The aim of this study was to determine the association between pro-inflammatory cytokines and hs-CRP levels and low-dose aspirin use for cardiovascular prevention in a population-based cohort (CoLaus Study). We assessed blood samples in 6085 participants (3201 women) aged 35-75years. Medications' use and indications were recorded. Among aspirin users (n=1'034; 17%), overall low-dose users (351; 5.8%) and low-dose for cardiovascular prevention users (324; 5.3%) were selected for analysis. Pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α were assessed by a multiplex particle-based flow cytometric assay and hs-CRP by an immunometric assay. Cytokines and hs-CRP were presented in quartiles. Multivariate analysis adjusting for sex, age, smoking status, body mass index, diabetes mellitus and immunomodulatory drugs showed no association between cytokines and hs-CRP levels and low-dose aspirin use for cardiovascular prevention, either comparing the topmost vs. the three other quartiles (OR 95% CI, 0.84 (0.59-1.18), 1.03 (0.78-1.32), 1.10 (0.83-1.46), 1.00 (0.67-1.69) for IL-1β, IL-6, TNF-α and hs-CRP, respectively), or comparing the topmost quartile vs. the first one (OR 95% CI, 0.87 (0.60-1.26), 1.19 (0.79-1.79), 1.26 (0.86-1.84), 1.06 (0.67-1.69)). Low-dose aspirin use for cardiovascular prevention does not impact plasma pro-inflammatory cytokine and hs-CRP levels in a population-based cohort.
Resumo:
The evolution of ischemic brain damage is strongly affected by an inflammatory reaction that involves soluble mediators, such as cytokines and chemokines, and specialized cells activated locally or recruited from the periphery. The immune system affects all phases of the ischemic cascade, from the acute intravascular reaction due to blood flow disruption, to the development of brain tissue damage, repair and regeneration. Increased endothelial expression of adhesion molecules and blood-brain barrier breakdown promotes extravasation and brain recruitment of blood-borne cells, including macrophages, neutrophils, dendritic cells and T lymphocytes, as demonstrated both in animal models and in human stroke. Nevertheless, most anti-inflammatory approaches showing promising results in experimental stroke models failed in the clinical setting. The lack of translation may reside in the redundancy of most inflammatory mediators, exerting both detrimental and beneficial functions. Thus, this review is aimed at providing a better understanding of the dualistic role played by each component of the inflammatory/immune response in relation to the spatio-temporal evolution of ischemic stroke injury.
Resumo:
Inhibition of tumor angiogenesis suppresses tumor growth and metastatic spreading in many experimental models, suggesting that anti-angiogenic drugs may be used to treat human cancer. During the past decade more than eighty molecules that showed anti-angiogenic activity in preclinical studies were tested in clinical cancer trials, but most of them failed to demonstrate any measurable anti-tumor activity and none have been approved for clinical use. Recent results stemming from trials with anti-VEGF antibodies, used alone or in combination with chemotherapy, suggest that systemic anti-angiogenic therapy may indeed have a measurable impact on cancer progression and patient survival. From the clinical studies it became nevertheless clear that the classical endpoints used in anti-cancer trials do not bring sufficient discriminative power to monitor the effects of anti-angiogenic drugs. It is therefore necessary to identify and validate molecular, cellular and functional surrogate markers of angiogenesis to monitor activity and efficacy of anti-angiogenic drugs in patients. Availability of such markers will be instrumental to re-evaluate the role of tumor angiogenesis in human cancer, to identify new molecular targets and drugs, and to improve planning, monitoring and interpretation of future studies. Future anti-angiogenesis trials integrating biological endpoints and surrogate markers or angiogenesis will require close collaboration between clinical investigators and laboratory-based researchers.
Resumo:
The formation of toxic protein aggregates is a common denominator to many neurodegenerative diseases and aging. Accumulation of toxic, possibly infectious protein aggregates induces a cascade of events, such as excessive inflammation, the production of reactive oxygen species, apoptosis and neuronal loss. A network of highly conserved molecular chaperones and of chaperone-related proteases controls the fold-quality of proteins in the cell. Most molecular chaperones can passively prevent protein aggregation by binding misfolding intermediates. Some molecular chaperones and chaperone-related proteases, such as the proteasome, can also hydrolyse ATP to forcefully convert stable harmful protein aggregates into harmless natively refoldable, or protease-degradable, polypeptides. Molecular chaperones and chaperone-related proteases thus control the delicate balance between natively folded functional proteins and aggregation-prone misfolded proteins, which may form during the lifetime and lead to cell death. Abundant data now point at the molecular chaperones and the proteases as major clearance mechanisms to remove toxic protein aggregates from cells, delaying the onset and the outcome of protein-misfolding diseases. Therapeutic approaches include treatments and drugs that can specifically induce and sustain a strong chaperone and protease activity in cells and tissues prone to toxic protein aggregations.
Resumo:
Delta 9-tetrahydrocannabinol (THC) has been proposed as therapeutic agent in the treatment of multiple sclerosis. In the present study, we examined whether a modulation of brain inflammatory by THC may protect against demyelination. Myelinating aggregating brain cell cultures were subjected to demyelination by a repeated treatment (3x) with the two inflammatory agents interferon-y (IFN-y) and lipopolysaccharide (LPS). The effects of THC on an acute inflammatory reponse were also examined by treating the aggregates with a single application of the two inflammatory agents. THC effects on the demyelinating process and on several mediators of the inflammatory reponse were analyzed. THC treatment partially prevented the decreased immunoreactivity for MBP, and the decrease in MBP content measured by immunoblotting. It prevented IFN-y + LPS -induced microglial reactivity; and decreased the IFN-y + LPS-induced i8ncreased phosphorylation of p44/42 MAP kinase. The other inflammatory markers, I-NOS and TNF-a mRNA expression, and p38 MAP kinase phosphorylation of p44/42 MAP kinase. The other inflammatory markers, I-NOS and TNF-a mRNA expression, and p38 MAP kinase phosphorylation were downregulated by THC treatment following a single application of the inflammatory agents, but not after repeated applications. THC protected partially against the IFN-y + LPS-induced demyelination. The protective effect of THC on IFN-y + LPS-induced demyelination may be due to a decrease of the inflammatory reponse. However, the anti-inflammatory effect of THC on some inflammatory markers is lost when the inflammatory response is more proeminent and of longer duration, suggesting either that the anti-inflammatory effect of a molecule may depend on the properties of the inflammatory response, or that the anti-inflammatory potential of THC decreases in case of repeated exposure.
Resumo:
Retinal effects of systemically administered drugs are rare due to the hematoretinal barriers that protect the retina from circulating active principles. However, some compounds may have direct or indirect toxic effects on the retina through direct interaction with a specific receptor or due to their accumulation within pigment of uveal cells. In the latter case, toxicity is dose-dependent and may be observed years after cessation of medication, as observed with antimalarial drugs. Anti-infective and anti-inflammatory agents, particularly glucocorticoids, are currently injected peri- or intraocularly. The mechanisms and the exact toxicity of glucocorticoids on the retina remain poorly understood. More recently, anti-VEGF has been specifically developed for the treatment of retinal diseases. However, the long-term blockade of VEGF on normal retinal physiology should be determined taking into account VEGF and VEGF receptors expression in the normal and pathologic retina. Whilst enormous advances are made in the treatment of retinal diseases, basic research is still required to define more accurately the molecular targets of drugs to improve their benefits and reduce their potential side effects.
Resumo:
Backgrounds: Pro-inflammatory cytokines and high-sensitive C-reactive protein (hs-CRP) are associated with increased risk for cardiovascular disease. Low-dose aspirin for cardiovascular (CV) prevention is reported to have anti-inflammatory effects. The aim of this study was to determine the association between cytokines and hs-CRP levels and low-dose aspirin use for CV prevention in a population-based cohort (CoLaus Study). Methods and Results: Blood samples were assessed in 6,085 participants (3,201 women) aged 35-75 years. Medications' use and indications were recorded. Among aspirin users (n=1'034; 17%), overall low-dose (351; 5.8%) and low-dose for CV prevention (324; 5.3%) users were specifically selected for analysis. IL-1beta, IL-6 and TNF-alpha were assessed by a multiplex particle-based flow cytometric assay and hs-CRP by an immunometric assay. Cytokines and hs-CRP were presented in quartiles. Multivariate analysis adjusting for sex, age, smoking status, body mass index, concomitant use of various immunomodulatory drugs, diabetes mellitus showed no association between cytokines and hs-CRP levels and low-dose aspirin use for CV prevention either comparing the topmost vs. the three other quartiles (OR 95% CI, 0.84 (0.59 - 1.18), 1.03 (0.78 - 1.32), 1.10 (0.83 - 1.46), 1.00 (0.67 - 1.69) for IL-1beta, IL-6, TNF-alpha and hs-CRP, respectively), or comparing the topmost quartile vs. the first one (OR 95% CI, 0.87 (0.60 - 1.26), 1.19 (0.79 - 1.79), 1.26 (0.86 - 1.84), 1.06 (0.67 - 1.69)). Conclusions: Low-dose aspirin use for cardiovascular prevention does not seem to impact plasma cytokine and hs-CRP levels in a population-based cohort.
Resumo:
OBJECTIVE: Low-grade chronic inflammation is one potential mechanism underlying the well-established association between major depressive disorder (MDD) and increased cardiovascular morbidity. Both aspirin and statins have anti-inflammatory properties, which may contribute to their preventive effect on cardiovascular diseases. Previous studies on the potentially preventive effect of these drugs on depression have provided inconsistent results. The aim of the present paper was to assess the prospective association between regular aspirin or statin use and the incidence of MDD. METHOD: This prospective cohort study included 1631 subjects (43.6% women, mean age 51.7 years), randomly selected from the general population of an urban area. Subjects underwent a thorough physical evaluation as well as semi-structured interviews investigating DSM-IV mental disorders at baseline and follow-up (mean duration 5.2 years). Analyses were adjusted for a wide array of potential confounders. RESULTS: Our main finding was that regular aspirin or statin use at baseline did not reduce the incidence of MDD during follow-up, regardless of sex or age (hazard ratios, aspirin: 1.19; 95%CI, 0.68-2.08; and statins: 1.25; 95%CI, 0.73-2.14; respectively). LIMITATIONS: Our study is not a randomized clinical trial and could not adjust for all potential confounding factors, information on aspirin or statin use was collected only for the 6 months prior to the evaluations, and the sample was restricted to subjects between 35 and 66 years of age. CONCLUSION: Our data do not support a large scale preventive treatment of depression using aspirin or statins in subjects aged from 35 to 66 years from the community.
Resumo:
In the past decade, there has been renewed interest in immune/inflammatory changes and their associated oxidative/nitrosative consequences as key pathophysiological mechanisms in schizophrenia and related disorders. Both brain cell components (microglia, astrocytes, and neurons) and peripheral immune cells have been implicated in inflammation and the resulting oxidative/nitrosative stress (O&NS) in schizophrenia. Furthermore, down-regulation of endogenous antioxidant and anti-inflammatory mechanisms has been identified in biological samples from patients, although the degree and progression of the inflammatory process and the nature of its self-regulatory mechanisms vary from early onset to full-blown disease. This review focuses on the interactions between inflammation and O&NS, their damaging consequences for brain cells in schizophrenia, the possible origins of inflammation and increased O&NS in the disorder, and current pharmacological strategies to deal with these processes (mainly treatments with anti-inflammatory or antioxidant drugs as add-ons to antipsychotics).