961 resultados para Angiotensin converting enzyme inhibitors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the impact of the piperacillin-tazobactam MIC in the outcome of 39 bloodstream infections due to extended-spectrum-β-lactamase-producing Escherichia coli. All 11 patients with urinary tract infections survived, irrespective of the MIC. For other sources, 30-day mortality was lower for isolates with a MIC of ≤ 2 mg/liter than for isolates with a higher MIC (0% versus 41.1%; P = 0.02).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endometriosis is an inflammatory estrogen-dependent disease defined by the presence of endometrial glands and stroma at extrauterine sites. The main purpose of endometriosis management is alleviating pain associated to the disease. This can be achieved surgically or medically, although in most women a combination of both treatments is required. Long-term medical treatment is usually needed in most women. Unfortunately, in most cases, pain symptoms recur between 6 months and 12 months once treatment is stopped. The authors conducted a literature search for English original articles, related to new medical treatments of endometriosis in humans, including articles published in PubMed, Medline, and the Cochrane Library. Keywords included "endometriosis" matched with "medical treatment", "new treatment", "GnRH antagonists", "Aromatase inhibitors", "selective progesterone receptor modulators", "anti-TNF α", and "anti-angiogenic factors". Hormonal treatments currently available are effective in the relief of pain associated to endometriosis. Among new hormonal drugs, association to aromatase inhibitors could be effective in the treatment of women who do not respond to conventional therapies. GnRH antagonists are expected to be as effective as GnRH agonists, but with easier administration (oral). There is a need to find effective treatments that do not block the ovarian function. For this purpose, antiangiogenic factors could be important components of endometriosis therapy in the future. Upcoming researches and controlled clinical trials should focus on these drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alpha-ketoglutarate-dependent (R)-dichlorprop dioxygenase (RdpA) and alpha-ketoglutarate-dependent (S)-dichlorprop dioxygenase (SdpA), which are involved in the degradation of phenoxyalkanoic acid herbicides in Sphingomonas herbicidovorans MH, were expressed and purified as His6-tagged fusion proteins from Escherichia coli BL21(DE3)(pLysS). RdpA and SdpA belong to subgroup II of the alpha-ketoglutarate-dependent dioxygenases and share the specific motif HXDX(24)TX(131)HX(10)R. Amino acids His-111, Asp-113, and His-270 and amino acids His-102, Asp-104, and His 257 comprise the 2-His-1-carboxylate facial triads and were predicted to be involved in iron binding in RdpA and SdpA, respectively. RdpA exclusively transformed the (R) enantiomers of mecoprop [2-(4-chloro-2-methylphenoxy)propanoic acid] and dichlorprop [2-(2,4-dichlorophenoxy)propanoic acid], whereas SdpA was specific for the (S) enantiomers. The apparent Km values were 99 microM for (R)-mecoprop, 164 microM for (R)-dichlorprop, and 3 microM for alpha-ketoglutarate for RdpA and 132 microM for (S)-mecoprop, 495 microM for (S)-dichlorprop, and 20 microM for alpha-ketoglutarate for SdpA. Both enzymes had high apparent Km values for oxygen; these values were 159 microM for SdpA and >230 microM for RdpA, whose activity was linearly dependent on oxygen at the concentration range measured. Both enzymes had narrow cosubstrate specificity; only 2-oxoadipate was able to replace alpha-ketoglutarate, and the rates were substantially diminished. Ferrous iron was necessary for activity of the enzymes, and other divalent cations could not replace it. Although the results of growth experiments suggest that strain MH harbors a specific 2,4-dichlorophenoxyacetic acid-converting enzyme, tfdA-, tfdAalpha-, or cadAB-like genes were not discovered in a screening analysis in which heterologous hybridization and PCR were used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stress-activated protein kinase c-Jun NH2-terminal kinase (JNK) is a central signal for interleukin-1beta (IL-1beta)-induced apoptosis in insulin-producing beta-cells. The cell-permeable peptide inhibitor of JNK (JNKI1), that introduces the JNK binding domain (JBD) of the scaffold protein islet-brain 1 (IB1) inside cells, effectively prevents beta-cell death caused by this cytokine. To define the molecular targets of JNK involved in cytokine-induced beta-cell apoptosis we investigated whether JNKI1 or stable expression of JBD affected the expression of selected pro- and anti-apoptotic genes induced in rat (RIN-5AH-T2B) and mouse (betaTC3) insulinoma cells exposed to IL-1beta. Inhibition of JNK significantly reduced phosphorylation of the specific JNK substrate c-Jun (p<0.05), IL-1beta-induced apoptosis (p<0.001), and IL-1beta-mediated c-fos gene expression. However, neither JNKI1 nor JBD did influence IL-1beta-induced NO synthesis or iNOS expression or the transcription of the genes encoding mitochondrial manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase rho (GSTrho), heat shock protein (HSP) 70, IL-1beta-converting enzyme (ICE), caspase-3, apoptosis-inducing factor (AIF), Bcl-2 or Bcl-xL. We suggest that the anti-apoptotic effect of JNK inhibition by JBD is independent of the transcription of major pro- and anti-apoptotic genes, but may be exerted at the translational or posttranslational level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In pancreatic beta cells, cyclic AMP-dependent protein kinase regulates many cellular processes including the potentiation of insulin secretion. The substrates for this kinase, however, have not been biochemically characterized. Here we demonstrate that the glucose transporter GLUT2 is rapidly phosphorylated by protein kinase A following activation of adenylyl cyclase by forskolin or the incretin hormone glucagon-like peptide-1. We show that serines 489 and 501/503 and threonine 510 in the carboxyl-terminal tail of the transporter are the in vitro and in vivo sites of phosphorylation. Stimulation of GLUT2 phosphorylation in beta cells reduces the initial rate of 3-O-methyl glucose uptake by approximately 48% but does not change the Michaelis constant. Similar differences in transport kinetics are observed when comparing the transport activity of GLUT2 mutants stably expressed in insulinoma cell lines and containing glutamates or alanines at the phosphorylation sites. These data indicate that phosphorylation of GLUT2 carboxyl-terminal tail modifies the rate of transport. This lends further support for an important role of the transporter cytoplasmic tail in the modulation of catalytic activity. Finally, because activation of protein kinase A stimulates glucose-induced insulin secretion, we discuss the possible involvement of GLUT2 phosphorylation in the amplification of the glucose signaling process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Islet-brain 1 (IB1) is the human and rat homologue of JIP-1, a scaffold protein interacting with the c-Jun amino-terminal kinase (JNK). IB1 expression is mostly restricted to the endocrine pancreas and to the central nervous system. Herein, we explored the transcriptional mechanism responsible for this preferential islet and neuronal expression of IB1. A 731-bp fragment of the 5' regulatory region of the human MAPK8IP1 gene was isolated from a human BAC library and cloned upstream of a luciferase reporter gene. This construct drove high transcriptional activity in both insulin-secreting and neuron-like cells but not in unrelated cell lines. Sequence analysis of this promoter region revealed the presence of a neuron-restrictive silencer element (NRSE) known to bind repressor zinc finger protein REST. This factor is not expressed in insulin-secreting and neuron-like cells. By mobility shift assay, we confirmed that REST binds to the NRSE present in the IB1 promoter. Once transiently transfected in beta-cell lines, the expression vector encoding REST repressed IB1 transcriptional activity. The introduction of a mutated NRSE in the 5' regulating region of the IB1 gene abolished the repression activity driven by REST in insulin-secreting beta cells and relieved the low transcriptional activity of IB1 observed in unrelated cells. Moreover, transfection in non-beta and nonneuronal cell lines of an expression vector encoding REST lacking its transcriptional repression domain relieved IB1 promoter activity. Last, the REST-mediated repression of IB1 could be abolished by trichostatin A, indicating that deacetylase activity is required to allow REST repression. Taken together, these data establish a critical role for REST in the control of the tissue-specific expression of the human IB1 gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fas, a death domain-containing member of the tumor necrosis factor receptor family and its ligand FasL have been predominantly studied with respect to their capability to induce cell death. However, a few studies indicate a proliferation-inducing signaling activity of these molecules too. We describe here a novel signaling pathway of FasL and the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) that triggers transcriptional activation of the proto-oncogene c-fos, a typical target gene of mitogenic pathways. FasL- and TRAIL-mediated up-regulation of c-Fos was completely dependent on the presence of Fas-associated death domain protein (FADD) and caspase-8, but caspase activity seemed to be dispensable as a pan inhibitor of caspases had no inhibitory effect. Upon overexpression of the long splice form of cellular FADD-like interleukin-1-converting enzyme (FLICE) inhibitory protein (cFLIP) in Jurkat cells, FasL- and TRAIL-induced up-regulation of c-Fos was almost completely blocked. The short splice form of FLIP, however, showed a rather stimulatory effect on c-Fos induction. Together these data demonstrate the existence of a death receptor-induced, FADD- and caspase-8-dependent pathway leading to c-Fos induction that is inhibited by the long splice form FLIP-L.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type 1 diabetes is characterized by the infiltration of activated leukocytes within the pancreatic islets, leading to beta-cell dysfunction and destruction. The exact role played by interferon-gamma, tumor necrosis factor (TNF)-alpha, and interleukin-1beta in this pathogenic process is still only partially understood. To study cytokine action at the cellular level, we are working with the highly differentiated insulin-secreting cell line, betaTc-Tet. We previously reported that it was susceptible to apoptosis induced by TNF-alpha, in combination with interleukin-1beta and interferon-gamma. Here, we report that cytokine-induced apoptosis was correlated with the activation of caspase-8. We show that in betaTc-Tet cells, overexpression of cFLIP, the cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein, completely abolished cytokine-dependent activation of caspase-8 and protected the cells against apoptosis. Furthermore, cFLIP overexpression increased the basal and interleukin-1beta-mediated transcriptional activity of nuclear factor (NF)-kappaB, whereas it did not change cytokine-induced inducible nitric oxide synthase gene transcription and nitric oxide secretion. The presence of cFLIP prevented the weak TNF-alpha-induced reduction in cellular insulin content and secretion; however, it did not prevent the decrease in glucose-stimulated insulin secretion induced by the combined cytokines, in agreement with our previous data demonstrating that interferon-gamma alone could induce these beta-cell dysfunctions. Together, our data demonstrate that overexpression of cFLIP protects mouse beta-cells against TNF-alpha-induced caspase-8 activation and apoptosis and is correlated with enhanced NF-kappaB transcriptional activity, suggesting that cFLIP may have an impact on the outcome of death receptor-triggered responses by directing the intracellular signals from beta-cell death to beta-cell survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucagon-like peptide-1 (GLP-1) stimulates glucose-induced insulin secretion by binding to a specific G protein-coupled receptor linked to activation of the adenylyl cyclase pathway. Here, using insulinoma cell lines, we studied homologous and heterologous desensitization of GLP-1-induced cAMP production. Preexposure of the cells to GLP-1 induced a decrease in GLP-1-mediated cAMP production, as assessed by a 3- to 5-fold rightward shift of the dose-response curve and an approximately 20 percent decrease in the maximal production of cAMP. Activation of protein kinase C by the phorbol ester phorbol 12-myristate 13-acetate (PMA) also induced desensitization of the GLP-1-mediated response, leading to a 6- to 9-fold shift in the EC50 and a 30% decrease in the maximal production of cAMP. Both forms of desensitization were additive, and the protein kinase C inhibitor RO-318220 inhibited PMA-induced desensitization, but not agonist-induced desensitization. GLP-1- and PMA-dependent desensitization correlated with receptor phosphorylation, and the levels of phosphorylation induced by the two agents were additive. Furthermore, PMA-induced, but not GLP-1-induced, phosphorylation was totally inhibited by RO-318220. Internalization of the GLP-1 receptor did not participate in the desensitization induced by PMA, as a mutant GLP-1 receptor lacking the last 20 amino acids of the cytoplasmic tail was found to be totally resistant to the internalization process, but was still desensitized after PMA preexposure. PMA and GLP-1 were not able to induce the phosphorylation of a receptor deletion mutant lacking the last 33 amino acids of the cytoplasmic tail, indicating that the phosphorylation sites were located within the deleted region. The cAMP production mediated by this deletion mutant was not desensitized by PMA and was only poorly desensitized by GLP-1. Together, our results indicate that the production of cAMP and, hence, the stimulation of insulin secretion induced by GLP-1 can be negatively modulated by homologous and heterologous desensitization, mechanisms that involve receptor phosphorylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melanoma is the cancer with the fastest incidence increase in Switzerland. 30% of the cases arise before the age of 50 years. Once metastatic, the median survival under current systemic therapies is about 8 months, with less than 5% of patients alive at 5 years. Many efforts in the understanding of cellular biology, intracellular signaling pathways, as well as the role of cellular immunity have been made in the recent years. This has resulted in the development of novel and very promising therapies. In this review, we will cover the results obtained with targeted therapies such as "tyrosin kinase inhibitors" (TKI), as well as those obtained with a monoclonal antibody directed against the CTLA-4 receptor of lymphocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angioedema related to a deficiency in the C1-inhibitor protein is characterized by its lack of response to therapies including antihistamine, steroids, and epinephrine. In the case of laryngeal edema, mortality rate is approximately 30 percent. The first case of the acquired form of angioedema related to a deficiency in C1-inhibitor was published in 1972. In our paper, we present a case of an acquired form of angioedema of the oropharyngeal region secondary to the simultaneous occurrence of two causative factors: neutralization of C1-inhibitor by an autoantibody and the use of an angiotensin convertin enzyme inhibitor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes a form of partial agonism for a CD8+ CTL clone, S15, in which perforin-dependent killing and IFN-gamma production were lost but Fas (APO1 or CD95)-dependent cytotoxicity preserved. Cloned S15 CTL are H-2Kd restricted and specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260 (SYIPSAEKI). The presence of a photoactivatable group in the epitope permitted assessment of TCR-ligand binding by TCR photoaffinity labeling. Selective activation of Fas-dependent killing was observed for a peptide-derivative variant containing a modified photoreactive group. A similar functional response was obtained after binding of the wild-type peptide derivative upon blocking of CD8 participation in TCR-ligand binding. The epitope modification or blocking of CD8 resulted in an > or = 8-fold decrease in TCR-ligand binding. In both cases, phosphorylation of zeta-chain and ZAP-70, as well as calcium mobilization were reduced close to background levels, indicating that activation of Fas-dependent cytotoxicity required weaker TCR signaling than activation of perforin-dependent killing or IFN-gamma production. Consistent with this, we observed that depletion of the protein tyrosine kinase p56(lck) by preincubation of S15 CTL with herbimycin A severely impaired perforin- but not Fas-dependent cytotoxicity. Together with the observation that S15 CTL constitutively express Fas ligand, these results indicate that TCR signaling too weak to elicit perforin-dependent cytotoxicity or cytokine production can induce Fas-dependent cytotoxicity, possibly by translocation of preformed Fas ligand to the cell surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary Interleukin-1beta (IL-1beta) is a potent inflammatory cytokine, which is implicated in acute and chronic inflammatory disorders. The activity of IL-1beta is regulated by the proteolytic cleavage of its inactive precursor resulting in the mature, bioactive form of the cytokine. Cleavage of the IL-1beta precursor is performed by the cysteine protease caspase-1, which is activated within protein complexes termed 'inflammasomes'. To date, four distinct inflammasomes have been described, based on different core receptors capable of initiating complex formation. Both the host and invading pathogens need to control IL-1beta production and this can be achieved by regulating inflammasome activity. However, we have, as yet, little understanding of the mechanisms of this regulation. In particular the negative feedbacks, which are critical for the host to limit collateral damage of the inflammatory response, remain largely unexplored. Recent exciting findings in this field have given us an insight into the potential of this research area in terms of opening up new therapeutic avenues for inflammatory disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adrenal chromaffin cells synthesize and secrete catecholamines and neuropeptides that may regulate hormonal and paracrine signaling in stress and also during inflammation. The aim of our work was to study the role of the cytokine interleukin-1beta (IL-1beta) on catecholamine release and synthesis from primary cell cultures of human adrenal chromaffin cells. The effect of IL-1beta on neuropeptide Y (NPY) release and the intracellular pathways involved in catecholamine release evoked by IL-1beta and NPY were also investigated. We observed that IL-1beta increases the release of NPY, norepinephrine (NE), and epinephrine (EP) from human chromaffin cells. Moreover, the immunoneutralization of released NPY inhibits catecholamine release evoked by IL-1beta. Moreover, IL-1beta regulates catecholamine synthesis as the inhibition of tyrosine hydroxylase decreases IL-1beta-evoked catecholamine release and the cytokine induces tyrosine hydroxylase Ser40 phosphorylation. Moreover, IL-1beta induces catecholamine release by a mitogen-activated protein kinase (MAPK)-dependent mechanism, and by nitric oxide synthase activation. Furthermore, MAPK, protein kinase C (PKC), protein kinase A (PKA), and nitric oxide (NO) production are involved in catecholamine release evoked by NPY. Using human chromaffin cells, our data suggest that IL-1beta, NPY, and nitric oxide (NO) may contribute to a regulatory loop between the immune and the adrenal systems, and this is relevant in pathological conditions such as infection, trauma, stress, or in hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrin activity is controlled by changes in affinity (i.e. ligand binding) and avidity (i.e. receptor clustering). Little is known, however, about the effect of affinity maturation on integrin avidity and on the associated signaling pathways. To study the effect of affinity maturation on integrin avidity, we stimulated human umbilical vein endothelial cells (HUVEC) with MnCl(2) to increase integrin affinity and monitored clustering of beta 1 and beta 3 integrins. In unstimulated HUVEC, beta 1 integrins were present in fibrillar adhesions, while alpha V beta 3 was detected in peripheral focal adhesions. Clustered beta 1 and beta 3 integrins expressed high affinity/ligand-induced binding site (LIBS) epitopes. MnCl(2)-stimulation promoted focal adhesion and actin stress fiber formation at the basal surface of the cells, and strongly enhanced mAb LM609 staining and expression of beta 3 high affinity/LIBS epitopes at focal adhesions. MnCl(2)-induced alpha V beta 3 clustering was blocked by a soluble RGD peptide, by wortmannin and LY294002, two pharmacological inhibitors of phosphatidylinositol 3-kinase (PI 3-K), and by over-expressing a dominant negative PI 3-K mutant protein. Conversely, over-expression of active PI 3-K and pharmacological inhibiton of Src with PP2 and CGP77675, enhanced basal and manganese-induced alpha V beta 3 clustering. Transient increased phosphorylation of protein kinase B/Akt, a direct target of PI 3K, occurred upon manganese stimulation. MnCl(2) did not alter beta 1 integrin distribution or beta1 high-affinity/LIBS epitope expression. Based on these results, we conclude that MnCl(2)-induced alpha V beta 3 integrin affinity maturation stimulates focal adhesion and actin stress fiber formation, and promotes recruitment of high affinity alpha V beta 3 to focal adhesions. Affinity-modulated alpha V beta 3 clustering requires PI3-K signaling and is negatively regulate by Src.