960 resultados para Ammonium enrichment
Resumo:
To determine the effects of nitrogen source on rates of net N transfer between plants connected by a common mycorrhizal network, we measured transfer of N supplied as (NH4NO3)-N-15-N-14 or (NH4NO3)-N-14-N-15 in three Casuarina/Eucalyptus treatments interconnected by a Pisolithus sp. The treatments were nonnodulated nonmycorrhizal/nonmycorrhizal; nonnodulated mycorrhizal/mycorrhizal; and nodulated mycorrhizal/mycorrhizal. Mycorrhization was 67% in Eucalyptus and 36% in Casuarina. N-2 fixation supplied 38% of the N in Casuarina. Biomass, N and N-15 contents were lowest in nonmycorrhizal plants and greatest in plants in the nodulated/mycorrhizal treatment. Nitrogen transfer was enhanced by mycorrhization and by nodulation, and was greater when N was supplied as (NH4+)-N-15 than (NO3-)-N-15. Nitrogen transfer rates were lowest in the nonmycorrhizal treatment for either N-15 source, and greatest in the nodulated, mycorrhizal treatment. Transfer was greater to Casuarina than to Eucalyptus and where ammonium rather than nitrate was the N source. Irrespective of N-15 source and of whether Casuarina or Eucalyptus was the N sink, net N transfer was low and was similar in both nonnodulated treatments. However, when Casuarina was the N sink in the nodulated, mycorrhizal treatment, net N transfer was much greater with (NH4+)-N-15 than with (NO3-)-N-15. High N demand by Casuarina resulted in greater net N transfer from the less N-demanding Eucalyptus. Net transfer of N from a non-N-2-fixing to an N-2-fixing plant may reflect the very high N demand of N-2-fixing species.
Resumo:
Acacia angustissima has been proposed as a protein supplement in countries where low quality forages predominate. A number of non-protein amino acids have been identified in the leaves of A. angustissima and these have been linked to toxicity in ruminants. The non-protein amino acid 4-n-acetyl-2,4-diaminobutyric acid (ADAB) has been shown to be the major amino acid in the leaves of A. angustissima. The current study aimed to identify micro-organisms from the rumen environment capable of degrading ADAB by using a defined rumen-simulating media with an amino acid extract from A. angustissima. A mixed enrichment culture was obtained that exhibited substantial ADAB-degrading ability. Attempts to isolate an ADAB-degrading micro-organism were carried out, however no isolates were able to degrade ADAB in pure culture. This enrichment culture was also able to degrade the non-protein amino acids diaminobutyric acid (DABA) and diaminopropionic acid (DAPA) which have structural similarities to ADAB. Two isolates were obtained which could degrade DAPA. One isolate is a novel Grain-positive rod (strain LPLR3) which belongs to the Firmicutes and is not closely related to any previously isolated bacterium. The other isolate is strain LPSR1 which belongs to the Gammaproteobacteria and is closely related (99.93% similar) to Klebsiella pneumoniae subsp. ozaenae. The studies demonstrate that the rumen is a potential rich source of undiscovered micro-organisms which have novel capacities to degrade plant secondary compounds. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effects of free ammonia (FA; NH3) and free nitrous acid (FNA; HNO2) concentrations on the metabolisms of an enriched ammonia oxidizing bacteria (AOB) culture were investigated using a method allowing the decoupling of growth and energy generation processes. A lab-scale sequencing batch reactor (SBR) was operated for the enrichment of an AOB culture. Fluorescent in-situ hybridization (FISH) analysis showed that 82% of the bacterial population in the SBR bound to the NEU probe specifically designed for Nitrosomonas europaea. Batch tests were carried out to measure the oxygen and ammonium consumption rates by the culture at various FA and FNA levels, in the presence or absence of inorganic carbon (CO2, HCO3, and CO32-). It was revealed that FA of up to 16.0 mgNH(3)-N (.) L-1, which was the highest concentration used in this study, did not have any inhibitory effect on either the catabolic or anabolic processes of the Nitrosomonas culture. In contrast, FNA inhibited both the growth and energy production capabilities of the Nitrosomonas culture. The inhibition on growth initiated at approximately 0.10 mgHNO(2)-(NL-1)-L-., and the data suggested that the biosynthesis was completely stopped at an FNA concentration of 0.40 mgHNO(2)-N (.) L-1. The inhibition on energy generation initiated at a slightly lower level but the Nitrosomonas culture was still oxidizing ammonia at half of the maximum rate at an FNA concentration of 0.50-0.63 mgHNO(2)-N (.) L-1. The affinity constant of the Nitrosomonas culture with respect to ammonia was determined to be 0.36 mgNH3-N (.) L-1, independent of the presence or absence of inorganic carbon. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Ectomycorrhizal (EM) associations facilitate plant nitrogen (N) acquisition, but the contribution of EM associations to tree N nutrition is difficult to ascertain in ecosystems. We studied the abilities of subtropical EM fungi and nutritionally contrasting Eucalyptus species, Eucalyptus grandis W. Hill ex Maiden and Eucalyptus racemosa Cav, to use N sources in axenic and soil cultures, and determined the effect of EM fungi on plant N use and plant N-15 natural abundance (delta N-15). As measured by seedling growth, both species showed little dependence on EM when growing in the N-rich minerotrophic soil from E. grandis rainforest habitat or in axenic culture with inorganic N sources. Both species were heavily dependent on EM associations when growing in the N-poor, organotrophic soil from the E. racemosa wallum habitat or in axenic culture with organic N sources. In axenic culture, EM associations enabled both species to use organic N when supplied with amide-, peptide- or protein-N. Grown axenically with glutamine- or protein-N, delta N-15 of almost all seedlings was lower than source N. The delta N-15 of all studied organisms was higher than the N source when grown on glutathione. This unexpected N-15 enrichment was perhaps due to preferential uptake of an N moiety more N-15-enriched than the bulk molecular average. Grown with ammonium-N, the delta N-15 of non-EM seedlings was mostly higher than that of source N. In contrast, the delta N-15 of EM seedlings was mostly lower than that of source N, except at the lowest ammonium concentration. Discrimination against N-15 was strongest when external ammonium concentration was high. We suggest that ammonium assimilation via EM fungi may be the cause of the often observed distinct foliar delta N-15 of EM and non-EM species, rather than use of different N sources by species with different root specialisations. In support of this notion, delta N-15 of soil and leaves in the rainforest were similar for E. grandis and co-occurring non-mycorrhizal Proteaceae. In contrast, in wallum forest, E. racemosa leaves and roots were strongly N-15-depleted relative to wallum soil and Proteaceae leaves. We conclude that foliar delta N-15 may be used in conjunction with other ecosystem information as a rapid indicator of plant dependency on EM associations for N acquisition.
Resumo:
Separate treatment of dewatering liquor from anaerobic sludge digestion significantly reduces the nitrogen load of the main stream and improves overall nitrogen elimination. Such ammonium-rich wastewater is particularly suited to be treated by high rate processes which achieve a rapid elimination of nitrogen with a minimal COD requirement. Processes whereby ammonium is oxidised to nitrite only (nitritation) followed by denitritation with carbon addition can achieve this. Nitrogen removal by nitritation/denitritation was optimised using a novel SBR operation with continuous dewatering liquor addition. Efficient and robust nitrogen elimination was obtained at a total hydraulic retention time of 1 day via the nitrite pathway. Around 85-90% nitrogen removal was achieved at an ammonium loading rate of 1.2 g NH4+-N m(-3) d(-1). Ethanol was used as electron donor for denitritation at a ratio of 2.2gCODg(-1) N removed. Conventional nitritation/denitritation with rapid addition of the dewatering liquor at the beginning of the cycle often resulted in considerable nitric oxide (NO) accumulation during the anoxic phase possibly leading to unstable denitritation. Some NO production was still observed in the novel continuous mode, but denitritation was never seriously affected. Thus, process stability can be increased and the high specific reaction rates as well as the continuous feeding result in decreased reactor size for full-scale operation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Visualisation of multiple isoforms of kappa-casein on 2-D gels is restricted by the abundant alpha- and beta-caseins that not only limit gel loading but also migrate to similar regions as the more acidic kappa-casein isoforms. To overcome this problem, we took advantage of the absence of cysteine residues in alpha(S1)- and beta-casein by devising an affinity enrichment procedure based on reversible biotinylation of cysteine residues. Affinity capture of cysteine-containing proteins on avidin allowed the removal of the vast majority of alpha(S1)- and beta-casein, and on subsequent 2-D gel analysis 16 gel spots were identified as kappa-casein by PMF. Further analysis of the C-terminal tryptic peptide along with structural predictions based on mobility on the 2-D gel allowed us to assign identities to each spot in terms of genetic variant (A or B), phosphorylation status (1, 2 or 3) and glycosylation status (from 0 to 6). Eight isoforms of the A and B variants with the same PTMs were observed. When the casein fraction of milk from a single cow, homozygous for the B variant of kappa-casein, was used as the starting material, 17 isoforms from 13 gel spots were characterised. Analysis of isoforms of low abundance proved challenging due to the low amount of material that could be extracted from the gels as well as the lability of the PTMs during MS analysis. However, we were able to identify a previously unrecognised site, T-166, that could be phosphorylated or glycosylated. Despite many decades of analysis of milk proteins, the reasons for this high level of heterogeneity are still not clear.
Resumo:
The bacteria that mediate the anaerobic oxidation of ammonium (anammox) are detected worldwide in natural and man-made ecosystems, and contribute up to 50% to the loss of inorganic nitrogen in the oceans. Two different anammox species rarely live in a single habitat, suggesting that each species has a defined but yet unknown niche. Here we describe a new anaerobic ammonium oxidizing bacterium with a defined niche: the co-oxidation of propionate and ammonium. The new anammox species was enriched in a laboratory scale bioreactor in the presence of ammonium and propionate. Interestingly, this particular anammox species could out-compete other anammox bacteria and heterotrophic denitrifiers for the oxidation of propionate in the presence of ammonium, nitrite and nitrate. We provisionally named the new species Candidatus "Anammoxoglobus propionicus".
Resumo:
Unusually high concentrations of exchangeable-NH4+ (up to 270 kg-N/ha) were observed in a Vertisol below 1 m in southeast Queensland. This study aimed to identify the source of this NH4+. Preliminary sampling of native vegetation and cropping areas had found that elevated NH4+was only present under cropped soil, indicating that clearing was linked to the NH4+formation. Mechanisms of NH4+formation that may have occurred in the subsoil after clearing were hypothesised to be a) mineralisation of organic-N; b) NO3- reduction to NH4+; and/or c) the release of fixed-NH4+. In addition it was proposed that nitrification was inhibited in the subsoil, and that this allowed any NH4+formed to accumulate over time. Incubation experiments to examine nitrification rates revealed that nitrification was undetectable, and appeared to be limited by a combination of subsoil acidity and low numbers of nitrifying organisms. Mineralisation studies also revealed that the mineralisation of organic-N was undetectable, and that mineralising organisms were limited by acidity. A small amount of nitrate ammonification could be observed with the aid of a 15N tracer if the soil was waterlogged. However, this NH4+was insufficient to account for the overall NH4+accumulation, and these waterlogged conditions were not observed in the field. Concentrations of fixed- NH4+ measured were also too low to have been responsible for the accumulation of exchangeable-NH4+. It was concluded that none of the proposed hypotheses of NH4+formation could account for the NH4+accumulation observed.
Resumo:
One aim of providing enrichment to captive animals is to promote the expression of behavioural patterns similar to their wild conspecifics. We evaluated the effectiveness of four types of simple feeding enrichment, using surveillance cameras to record the behaviour of 11 captive squirrel monkeys housed in a single enclosure at Alma Park Zoo in Brisbane, Australia. The enrichment involved differences in presentation (whole/chopped) and distribution (localised/scattered) of fruit and vegetables that were part of the normal diet of these animals. Distinguishing between individual squirrel monkeys was not possible from the videos, so Instantaneous Scan Sampling was used to record the numbers of animals performing particular behaviours every 15 minutes over the 24 hour period as well as every 5 minutes for the hour following provision of enrichment. This provided an estimation of the percentage of time spent by the group in various activities. As a result of the enrichment, the activity budget of the group more closely approximated that of wild squirrel monkeys. However on a number of occasions where the enrichment required the squirrel monkeys to work to obtain their food (whole fruit and vegetables), a number of individuals became aggressive towards the zookeepers. This result highlights the variation in responses of individual animals towards enrichment and indicates that in enclosures with large numbers of animals, the response of each individual should be evaluated in addition to the overall benefit of the enrichment for the group. Furthermore, this variation also suggests that it may be beneficial to provide the animals with choices of enrichment as opposed to providing single forms of enrichment that may only be effective for a proportion of the animals in the enclosure, and may even result in undesirable responses from some individuals.