784 resultados para Alcoholism in pregnancy
Resumo:
The objective was to evaluate the effects of giving prostaglandin F(2 alpha) (PGF) to donor mares 48 h prior to embryo collection. Non-lactating donor mares (n = 20 estrous cycles in 10 mares), ranging from 2.5 to 10 y of age and 400 to 500 kg of body weight were used from September 2004 to February 2005 in the southern hemisphere (Brazil). Donor mares were randomly assigned in a cross-over design study. During a Treated cycle, 7.5 mg PGF was given 48 h prior to embryo collection, whereas in the Control cycle, 7.5 mg PGF was given at embryo collection. In Treated Cycles, serum progesterone concentrations decreased between the day of PGF treatment and the day of embryo collection (13.9 +/- 5.4 and 0.5 +/- 0.3 ng/mL, respectively; P < 0.05). In Treated versus Control cycles, the interovulatory interval was shorter (14.9 +/- 0.9 vs 17.5 +/- 1.1 d, P < 0.05). However, there was no significant difference between these groups for the interval from PGF to ovulation (average, 9.8 d), embryo recovery rate (average, 75%), embryo quality, uterine protein concentration, and pregnancy rate in recipient mares (average, 87% at 15 d after ovulation, with no pregnancy loss detected by 60 d). In conclusion, giving donor mares PGF 48 h prior to embryo collection reduced the average interovulatory interval by approximately 2.5 d, thereby potentially increasing the numbers of embryos that could be collected during a breeding season, with no deleterious effects on embryo recovery rate, embryo quality, or pregnancy rate in recipient mares. (c) 2011 Elsevier B.V. All rights reserved.
Resumo:
There is a molecular crosstalk between the trophoblast and maternal immune cells of bovine endometrium. The uterine cells are able to secrete cytokine/chemokines to either induce a suppressive environment for establishment of the pregnancy or to recruit immune cells to the endometrium to fight infections. Despite morphological differences between women and cows, mechanisms for immune tolerance during pregnancy seem to be conserved. Mechanisms for uterine immunesuppression in the cow include: reduced expression of major histocompatability proteins by the trophoblast; recruitment of macrophages to the pregnant endometrium; and modulation of immune-related genes in response to the presence of the conceptus. Recently, an eGFP transgenic cloned embryo model developed by our group showed that there is modulation of foetal proteins expressed at the site of syncytium formation, suggesting that foetal cell can regulate not only by the secretion of specific factors such as interferon-tau, but also by regulating their own protein expression to avoid excessive maternal recognition by the local immune system. Furthermore, foetal DNA can be detected in the maternal circulation; this may reflect the occurrence of an invasion of trophoblast cells and/or their fragment beyond the uterine basement membrane in the cow. In fact, the newly description of exosome release by the trophoblast cell suggests that could be a new fashion of maternal-foetal communication at the placental barrier. Additionally, recent global transcriptome studies on bovine endometrium suggested that the immune system is aware, from an immunological point of view, of the presence of the foetus in the cow during early pregnancy.
Resumo:
The objective was to compare pharmacological strategies aiming to inhibit prostaglandin F2 alpha (PGF(2 alpha)) synthesis (flunixin meglumine; FM), stimulate growth of the conceptus (recombinant bovine somatotropin; bST) and progesterone (P(4)) synthesis (human chorionic gonadotropin; hCG), as well as their combinations, regarding their ability to improve pregnancy rates in beef cattle. Lactating Nelore cows (N = 975), 35 to 70 days postpartum, were synchronized and inseminated by timed artificial insemination (TAT) on Day 0. on Day 7, cattle were allocated into eight groups and received one of the following treatments: saline (S) on Days 7 and 16 (Group Control); S on Day 7 and FM on Day 16 (Group FM); bST on Day 7 and S on Day 16 (Group bST); bST on Day 7 and FM on Day 16 (Group bST + FM); hCG on Day 7 and S on Day 16 (Group hCG); hCG on Day 7 and FM on Day 16 (Group hCG + FM); bST and hCG on Day 7 and S on Day 16 (Group bST + hCG), or bST and hCG on Day 7 and FM on Day 16 (Group bST + hCG + FM). The aforementioned treatments were administered at the following doses: 2.2 mg/kg FM (Banamine (R); Intervet Schering-Plough, Cotia, SP, Brazil), 500 mg bST (Boostin (R); Intervet Schering-Plough), and 2500 IU hCG (Chorulon (R); Intervet Schering-Plough). Pregnancy diagnosis was performed 40 days after TAI by transrectal ultrasonography. Pregnancy rates were not significantly different among treatments. However, there was a main effect of hCG treatment to increase pregnancy rates (63.0 vs. 55.4%; P = 0.001). Concentrations of P(4) did not differ significantly among groups on Day 7 or on Day 16. However, consistent with the higher pregnancy rates, hCG increased P(4) concentrations on Day 16 (10.6 vs. 9.6 ng/mL, respectively; P = 0.05). We concluded that hCG treatment 7 days after TAI improved pregnancy rates of lactating Nelore cows, possibly via a mechanism leading to induction of higher P(4) concentrations, or by reducing the luteolytic stimulus during maternal recognition of pregnancy. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Bovine interferon-alpha I1 (bIFN-alpha) may be useful for enhancing fertility in sheep and cattle because it has extensive sequence homology with ovine and bovine trophoblast protein-1 and, like those proteins, extends corpus luteum lifespan. To test the effectiveness of bIFN-alpha to enhance fertility, several experiments were performed in which inseminated heifers were given i.m. injections of bIFN-alpha approximately at the time of embryo-mediated signals that result in maintenance of the corpus luteum. In Exp. 1, heifers given 20 mg of bIFN-alpha daily from d 14 to 17 tended (P less than .07) to have lower pregnancy rates at d 110 to 112 of gestation (36/75; 48% vs 43/72; 60%). Similar results were obtained in Exp. 2 when heifers received a single injection of 40 mg of bIFN-alpha or placebo at d 13 after estrus; pregnancy rates at d 42 were 39/104 (38%) for bIFN-alpha and 47/98 (48%) for placebo. In Exp. 3, heifers were given gradually increasing doses of bIFN-alpha or placebo from d 11 to 19, because such a regimen had been shown to reduce the number of heifers experiencing hyperthermia after bIFN-alpha injection. Pregnancy rates were 42/95 (44%) for bIFN-alpha and 62/111 (56%) for placebo. Across all three experiments, pregnancy rates were lower (P less than .01) for heifers treated with bIFN-alpha (117/274; 43%) than for heifers treated with placebo (152/281; 54%). In conclusion, these results demonstrate that, under the administration systems used, bIFN-alpha does not increase pregnancy rate, but rather tends to reduce it.
Resumo:
Maternal alcoholism (ethanol and sugar cane brandy) during gestation induces delayed cellular growth and differentiation in fetal rat palate epithelium, with increased nuclear, cytoplasmic and cellular volumes, increased epithelial and keratin thickness and decreased cellular numerical density.
Resumo:
The aim of this study was to evaluate the effect of delaying ovulation subsequent to superstimulation of follicular growth in beef cows (Bos indicus) on embryo recovery rates and the capacity of embryos to establish pregnancies. Ovulation was delayed by three treatments using either progesterone (CIDR-B®) or a GnRH agonist (deslorelin). Multiparous Nelore cows (n = 24) received three of four superstimulation treatments in an incomplete block design (n = 18 per group). Cows in Groups CTRL, P48 and P60 were treated with a CIDR-B device plus estradiol benzoate (EB, 4 mg, i.m.) on Day-5, while cows in Group D60 were implanted with deslorelin on Day-7. Cows were superstimulated with FSH (Folltropin-V® 200 mg), from Day 0 to 3, using twice daily injections in decreasing amounts. All cows were treated with a luteolytic dose of prostaglandin on Day 2 (08:00 h). CIDR-B devices were removed as follows: Group CTRL, Day 2 (20:00 h); Group P48, Day 4 (08:00 h); Group P60, Day 4 (20:00 h). Cows in Group CTRL were inseminated at 10, 20 and 30 h after first detected estrus. Ovulation was induced for cows in Group P48 (Day 4, 08:00 h) and Groups P60 and D60 (Day 4, 20:00 h) by injection of LH (Lutropin®, 25 mg, i.m.), and these cows were inseminated 10 and 20 h after treatment with LH. Embryos were recovered on Days 11 or 12, graded and transferred to synchronized recipients. Pregnancies were determined by ultrasonography around Day 100. Data were analyzed by mixed procedure, Kruskal-Wallis and Chi-square tests. The number of ova/embryos, transferable embryos (mean ± S.E.M.) and pregnancy rates (%) were as follows, respectively: Group CTRL (10.8 ± 1.8, 6.1 ± 1.3, 51.5), P48 (12.6 ± 1.9, 7.1 ± 1.0, 52.3), P60 (10.5 ± 1.6, 5.7 ± 1.3, 40.0) and D60 (10.3 ± 1.7, 5.0 ± 1.2, 50.0). There were no significant differences among the groups (P > 0.05). It was concluded that fixed time AI in association with induced ovulation did not influence embryo recovery. Furthermore, pregnancy rates in embryos recovered from cows with delayed ovulation were similar to those in embryos obtained from cows treated with a conventional superstimulation protocol. © 2002 Elsevier B.V. All rights reserved.
Resumo:
The influence of endometrial cavity length (ECL) on implantation and pregnancy rates after 400 embryo transfers was studied prospectively in a population with the indication of IVF/intracytoplasmic sperm injection (ICSI). The tip of the transfer catheter was placed above or below the half point of the ECL in a randomized manner. Two analyses were performed: (i) absolute position (AP); embryo transfers were divided into three groups according to the distance between the end of the fundal endometrial surface and the catheter tip (DTC - distance tip catheter): AP 1 (n = 212), 10-15 mm; AP 2 (n = 158), 16-20 mm; and AP 3 (n = 30), ≥21 mm. (ii) relative position (RP) - embryo transfers were divided into four groups according to their RP [RP = (DTC/ECL) × 100]: RP 1 (n = 23), ≤40%; RP 2 (n = 177), 41-50%; RP 3 (n = 117), 51-60%; and RP 4 (n = 83), ≥61%. Analysis based on relative distance revealed significantly higher implantation and pregnancy rates (P < 0.05) in more central areas of the ECL. However, analysis based on absolute position did not reveal any difference. In conclusion, the present results demonstrated that implantation and pregnancy rates are influenced by the site of embryo transfer, with better results being obtained when the catheter tip is positioned close to the middle area of the endometrial cavity. In this respect, previous analysis of the ECL is the fundamental step in establishing the ideal site for embryo transfers.
Resumo:
The salivary activity in pups of spontaneously hypertensive rats (SHR) and Wistar (W) rats treated with atenolol during pregnancy, and lactation was evaluated. Atenolol's anti-hypertensive effect on the SHR rats was noticed from the beginning of treatment. Atenolol-treated SHR and Wistar rat pups showed a decrease in salivary gland weight, salivary flow, and protein concentration, with no alteration in salivary amylase activity. Atenolol's effect on salivary glands can interfere with oral health maintenance. Copyright © Informa Healthcare USA, Inc.
Resumo:
The objective was to evaluate the effects of plasma progesterone (P4) concentrations and exogenous eCG on ovulation and pregnancy rates of pubertal Nellore heifers in fixed-time artificial insemination (FTAI) protocols. In Experiment 1 (Exp. 1), on Day 0 (7 d after ovulation), heifers (n = 15) were given 2 mg of estradiol benzoate (EB) im and randomly allocated to receive: an intravaginal progesterone-releasing device containing 0.558 g of P4 (group 0.5G, n = 4); an intravaginal device containing 1 g of P4 (group 1G, n = 4); 0.558 g of P4 and PGF2α (PGF; 150 μg d-cloprostenol, group 0.5G/PGF, n = 4); or 1 g of P4 and PGF (group 1G/PGF, n = 3). On Day 8, PGF was given to all heifers and intravaginal devices removed; 24 h later (Day 9), all heifers were given 1 mg EB im. In Exp. 2, pubertal Nellore heifers (n = 292) were treated as in Exp. 1, with FTAI on Day 10 (30 to 36 h after EB). In Exp. 3, pubertal heifers (n = 459) received the treatments described for groups 0.5G/PGF and 1G/PGF and were also given 300 IU of eCG im (groups 0.5G/PGF/eCG and 1G/PGF/eCG) at device removal (Day 8). In Exp. 1, plasma P4 concentrations were significantly higher in heifers that received 1.0 vs 0.588 g P4, and were significantly lower in heifers that received PGF on Day 0. In Exp. 2 and 3, there were no significant differences among groups in rates of ovulation (65-77%) or pregnancy (Exp. 2: 26-33%; Exp. 3: 39-43%). In Exp. 3, diameter of the dominant ovarian follicle on Day 9 was larger in heifers given 0.558 g vs 1.0 g P4 (10.3 ± 0.2 vs 9.3 ± 0.2 mm; P < 0.01). In conclusion, lesser amounts of P4 in the intravaginal device or PGF on Day 0 decreased plasma P4 from Days 1 to 8 and increased diameter of the dominant follicle on Day 9. However, neither of these nor 300 IU of eCG on Day 8 significantly increased rates of ovulation or pregnancy. © 2011.
Resumo:
Semen cryopreservation is still considered suboptimal due to lower fertility when compared to fresh semen. The reasons for the loss of fertility are various and related to irreversible damage caused to the cells during the freeze-thaw process. An alternative to conventional cryopreservation represents the use of chilled bull semen, preventing the damage associated with freezing, thereby guaranteeing greater sperm viability. The aim of this study was to describe the use of cooled bull semen as a strategy to increase the pregnancy for Fixed-Time Artificial Insemination (FTAI) of Nellore (Bos indicus) cows. One ejaculate of a select Nellore bull obtained by electroejaculation was used; the semen sample was fractioned into two aliquots: one diluted in Botu-Bov® extender containing 6.4% glycerol for cryopreservation (BB-F, frozen group) and one diluted in the same extender, free from cryoprotectants and used for cooling (BB-C, cooled semen group). The samples in the BB-C group were chilled to 5°C using an isothermic box and maintained for 24 h prior to use. A total of 349 lactating Nellore cows (70-90 days after birth) were synchronized by the insertion of a progesterone releasing device (1.0 g) and estradiol benzoate (2.0 mg i.m.) on a random day of the estrous cycle (Day 0); FTAI was performed 44-48 h after the removal of the device. The pregnancy rates were 45.71 and 61.49% (P<0.05), respectively, for the cryopreserved or chilled bovine semen groups. In conclusion, the use of bull semen cooled for 24 h represents an alternative to conventionally cryopreserved semen, as determined by the increase the pregnancy per artificial insemination in bovine herds. © 2012 Science Publication.
Resumo:
BACKGROUND Pregnancy and arterial hypertension (AH) have a prohypertrophic effect on the heart. It is suspected that the 2 conditions combined cause disproportionate myocardial hypertrophy. We sought to evaluate myocardial hypertrophy (LVH) and left ventricular function in normotensive and hypertensive women in the presence or absence of pregnancy.METHODS This prospective cross-sectional study included 193 women divided into 4 groups: hypertensive pregnant (HTP; n = 57), normotensive pregnant (NTP; n = 47), hypertensive nonpregnant (HTNP; n = 41), and normotensive nonpregnant (NTNP; n = 48). After clinical and echocardiographic evaluation, the variables were analyzed using 2-way analysis of variance with pregnancy and hypertension as factors. Left ventricular mass (LVM) was compared using nonparametric analysis of variance and Dunn′s test. Predictors of LVH and diastolic dysfunction were analyzed using logistic regression (significance level, P < 0.05).RESULTS Myocardial hypertrophy was independently associated with hypertension (odds ratio (OR) = 11.1, 95% confidence interval (CI) = 3.2-38.5; P < 0.001) and pregnancy (OR = 6.1, 95% CI = 2.6-14.3; P < 0.001) in a model adjusted for age and body mass index. Nonpregnant women were at greater risk of LVH in the presence of AH (OR = 25.3, 95% CI = 3.15-203.5; P = 0.002). The risk was additionally increased in hypertensive women during pregnancy (OR = 4.3, 95% CI = 1.7-10.9; P = 0.002) in the model adjusted for stroke volume and antihypertensive medication. Although none of the NTNP women presented with diastolic dysfunction, it was observed in 2% of the NTP women, 29% of the HTNP women, and 42% of the HTP women (P < 0.05).CONCLUSIONS Hypertension and pregnancy have a synergistic effect on ventricular remodeling, which elevates a woman's risk of myocardial hypertrophy. © 2013 © American Journal of Hypertension, Ltd 2013. All rights reserved.
Resumo:
Plasmatic concentrations of von Willebrand Factor (vWF) increase during pregnancy in humans and dogs; however the mechanism of such increase is still not well defined. The aims of this study were: (i) to evaluate changes in vWF concentration during pregnancy and during the subsequent oestrous cycle in bitches affected and unaffected by von Willebrand Disease (vWD); (ii) to correlate the vWF levels and cortisol levels in both groups. Seven vWD affected (GI) and nine unaffected (GII) bitches were used. The animals were assessed during pregnancy, parturition, lactation and non-gestational oestrous cycle in 11 moments (Pregnancy 1, Pregnancy 2, Parturition, Lactation 1, Lactation 2, Lactation 3, Anestrus, Proestrus, Oestrus, Diestrus 1, and Diestrus 2). The following tests were performed; measurement of von Willebrand factor antigen (vWF:Ag), albumin and cortisol. In both groups, vWF concentration remained stable during the non-gestational oestrous cycle, but increased during pregnancy, with the highest value observed at parturition. Increases of 70% and 124% in vWF were seen in GI and GII, respectively, compared to anestrus. No correlation was found between vWF and cortisol. Values of vWF:Ag changed during pregnancy, with a peak at parturition, both in vWD affected and unaffected animals. Values of vWF were not altered in the different phases of the oestrous cycle following pregnancy in both groups. Evaluation of vWF during pregnancy can cause false negative results for vWD, but assessment can be performed at any point in the oestrous cycle of non-pregnant bitches. © 2012 Blackwell Verlag GmbH.
Resumo:
Intrauterine dietary restriction may cause changes in the functioning of offspring organs and systems later in life, an effect known as fetal programming. The present study evaluated mRNA abundance and immunolocalization of nutrient transporters as well as enterocytes proliferation in the proximal, median and distal segments of small intestine of rats born to protein-restricted dams. Pregnant rats were fed hypoproteic (6% protein) or control (17% protein) diets, and offspring rats were evaluated at 3 and 16 weeks of age. The presence of SGLT1 (sodium-glucose co-transporter 1), GLUT2 (glucose transporter 2), PEPT1 (peptide transporter 1) and the intestinal proliferation were evaluated by immunohistochemical techniques and the abundance of specific mRNA for SGLT1, GLUT2 and PEPT1 was assessed by the real-time PCR technique. Rats born to protein-restricted dams showed higher cell proliferation in all intestinal segments and higher gene expression of SGLT1 and PEPT1 in the duodenum. Moreover, in adult animals born to protein-restricted dams the immunoreactivity of SGLT1, GLUT2 and PEPT1in the duodenum was more intense than in control rats. Taken together, the results indicate that changes in the small intestine observed in adulthood can be programmed during the gestation. In addition, they show that this response is caused by both up-regulation in transporter gene expression, a specific adaptation mechanism, and intestinal proliferation, an unspecific adaptation mechanism.