954 resultados para Airplanes -- Scramjet engines
Resumo:
Variable geometry turbines provide an extra degree of flexibility in air management in turbocharged engines. The pivoting stator vanes used to achieve the variable turbine geometry necessitate the inclusion of stator vane endwall clearances. The consequent leakage flow through the endwall clearances impacts the flow in the stator vane passages and an understanding of the impact of the leakage flow on stator loss is required. A numerical model of a typical variable geometry turbine was developed using the commercial CFX-10 computational fluid dynamics software, and validated using laser doppler velocimetry and static pressure measurements from a variable geometry turbine with stator vane endwall clearance. Two different stator vane positions were investigated, each at three different operating conditions representing different vane loadings. The vane endwall leakage was found to have a significant impact on the stator loss and on the uniformity of flow entering the turbine rotor. The leakage flow changed considerably at different vane positions and flow incidence at vane inlet was found to have a significant impact.
Computer Simulation and Optimisation of an Intake Camshaft for a Restricted 600cc Four-Stroke Engine
Resumo:
This paper describes an experimental investigation into the surface heat transfer coefficient of finned metal cylinders in a free air stream. Ten cylinders were tested with four different fin pitches and five different fin lengths. The cylinders and their fins were designed to be representative of those found on a motorcycle engine with an external cylinder diameter of 100 mm and fin lengths of 10 to 50 mm. The fins of each cylinder were gravity die cast in aluminum allow. Each cylinder was electrically heated and mounted in a wind tunnel which subjected it to a range of air speeds between 2 and 20 m/s. The surface heat transfer coefficient, h, was found primarily to be a function of the air speed and the fin separation, with fin length having a lesser effect. In addition to the determination of an overall heat transfer coefficient, the distribution of cooling around the circumference of each cylinder was also studied. Not surprisingly, the cooling was found to be greatest on the front of the cylinder, which was the side first impinged by the air stream. The cooling of the rear of the cylinder was better than might have been expected and this is quantified.
Resumo:
This brief examines the application of nonlinear statistical process control to the detection and diagnosis of faults in automotive engines. In this statistical framework, the computed score variables may have a complicated nonparametric distri- bution function, which hampers statistical inference, notably for fault detection and diagnosis. This brief shows that introducing the statistical local approach into nonlinear statistical process control produces statistics that follow a normal distribution, thereby enabling a simple statistical inference for fault detection. Further, for fault diagnosis, this brief introduces a compensation scheme that approximates the fault condition signature. Experimental results from a Volkswagen 1.9-L turbo-charged diesel engine are included.
Resumo:
Information retrieval in the age of Internet search engines has become part of ordinary discourse and everyday practice: "Google" is a verb in common usage. Thus far, more attention has been given to practical understanding of information retrieval than to a full theoretical account. In Human Information Retrieval, Julian Warner offers a comprehensive overview of information retrieval, synthesizing theories from different disciplines (information and computer science, librarianship and indexing, and information society discourse) and incorporating such disparate systems as WorldCat and Google into a single, robust theoretical framework. There is a need for such a theoretical treatment, he argues, one that reveals the structure and underlying patterns of this complex field while remaining congruent with everyday practice. Warner presents a labor theoretic approach to information retrieval, building on his previously formulated distinction between semantic and syntactic mental labor, arguing that the description and search labor of information retrieval can be understood as both semantic and syntactic in character. Warner's information science approach is rooted in the humanities and the social sciences but informed by an understanding of information technology and information theory. The chapters offer a progressive exposition of the topic, with illustrative examples to explain the concepts presented. Neither narrowly practical nor largely speculative, Human Information Retrieval meets the contemporary need for a broader treatment of information and information systems.
Resumo:
The tailpipe emissions from automotive engines have been subject to steadily reducing legislative limits. This reduction has been achieved through the addition of sub-systems to the basic four-stroke engine which thereby increases its complexity. To ensure the entire system functions correctly, each system and / or sub-systems needs to be continuously monitored for the presence of any faults or malfunctions. This is a requirement detailed within the On-Board Diagnostic (OBD) legislation. To date, a physical model approach has been adopted by me automotive industry for the monitoring requirement of OBD legislation. However, this approach has restrictions from the available knowledge base and computational load required. A neural network technique incorporating Multivariant Statistical Process Control (MSPC) has been proposed as an alternative method of building interrelationships between the measured variables and monitoring the correct operation of the engine. Building upon earlier work for steady state fault detection, this paper details the use of non-linear models based on an Auto-associate Neural Network (ANN) for fault detection under transient engine operation. The theory and use of the technique is shown in this paper with the application to the detection of air leaks within the inlet manifold system of a modern gasoline engine whilst operated on a pseudo-drive cycle. Copyright © 2007 by ASME.
Resumo:
This paper investigates the performance characteristics of rapeseed methyl ester, EN 14214 biodiesel, when used for electrical generation in compression ignition engines. The work was inspired by the need to replace fossil diesel fuel with a sustainable low carbon alternative while maintaining generator performance, power quality, and compliance with ISO 8528-5. A 50-kVA Perkins diesel engine generator was used to assess the impact of biodiesel with particular regard to gen-set fuel consumption, load acceptance, and associated standards. Tests were performed on the diesel gen-set for islanded and grid-connected modes of operation, hence both steady-state and transient performance were fully explored. Performance comparisons were made with conventional fossil diesel fuel, revealing minimal technical barriers for electrical generation from this sustainable, carbon benign fuel. Recommendations for improved transient performance are proposed and validated through tests.
Resumo:
The paper describes the principal features of Omnivore, a spark-ignition-based research engine designed to investigate the possibility of true wide-range HCCI operation on a variety of fossil and renewable liquid fuels. The engine project is part-funded jointly by the United Kingdom's Department for the Environment, Food and Rural Affairs (DEFRA) and the Department of the Environment of Northern Ireland (DoENI). The engineering team includes Lotus Engineering, Jaguar Cars, Orbital Corporation and Queen's University Belfast.
Resumo:
Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.