894 resultados para Aggregation pheromone


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thrust towards energy conservation and reduced environmental footprint has fueled intensive research for alternative low cost sources of renewable energy. Organic photovoltaic cells (OPVs), with their low fabrication costs, easy processing and flexibility, represent a possible viable alternative. Perylene diimides (PDIs) are promising electron-acceptor candidates for bulk heterojunction (BHJ) OPVs, as they combine higher absorption and stability with tunable material properties, such as solubility and position of the lowest unoccupied molecular orbital (LUMO) level. A prerequisite for trap free electron transport is for the LUMO to be located at a level deeper than 3.7 eV since electron trapping in organic semiconductors is universal and dominated by a trap level located at 3.6 eV. Although the mostly used fullerene acceptors in polymer:fullerene solar cells feature trap-free electron transport, low optical absorption of fullerene derivatives limits maximum attainable efficiency. In this thesis, we try to get a better understanding of the electronic properties of PDIs, with a focus on charge carrier transport characteristics and the effect of different processing conditions such as annealing temperature and top contact (cathode) material. We report on a commercially available PDI and three PDI derivatives as acceptor materials, and its blends with MEH-PPV (Poly[2-methoxy 5-(2-ethylhexyloxy)-1,4-phenylenevinylene]) and P3HT (Poly(3-hexylthiophene-2,5-diyl)) donor materials in single carrier devices (electron-only and hole-only) and in solar cells. Space-charge limited current measurements and modelling of temperature dependent J-V characteristics confirmed that the electron transport is essentially trap-free in such materials. Different blend ratios of P3HT:PDI-1 (1:1) and (1:3) show increase in the device performance with increasing PDI-1 ratio. Furthermore, thermal annealing of the devices have a significant effect in the solar cells that decreases open-circuit voltage (Voc) and fill factor FF, but increases short-circuit current (Jsc) and overall device performance. Morphological studies show that over-aggregation in traditional donor:PDI blend systems is still a big problem, which hinders charge carrier transport and performance in solar cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to study the self-assembly process of C3-symmetric molecules. To accomplish this objective 1,3,5 – benzentricarboxamides (BTA) derivatives were obtained. Five C3-symmetric molecules were synthesized in moderate to good yields (39-72%) using azo-benzene, aniline, benzylamine, tryptophan and tyrosine. The aggregation behavior of the BTA derivatives was probed with 1H-NMR spectroscopy, 1H-1H 2D Nuclear Overhauser Effect Spectroscopy (NOESY) and Diffusion Ordered Spectroscopy (DOSY). These experiments allowed to study the influence of H-bonding groups, aromatic rings, unsaturated bonds and the overall geometry in the molecular self-assembly associated with the different structural patterns present on these molecules. The stacking and large molecule behavior where observed in BTA 1, aniline derivative, BTA 4, tyrosine derivative or BTA 5, tryptophan derivative, with several of those discussed functional groups such as unsaturated bonds and H-bonding groups. BTA 5 was used in a few preliminary interaction studies with glucose and ammonium chloride showing interaction with the ammonium ion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Unfolded Protein Response (UPR) is a signaling pathway that is activated by an accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) that causes ER stress. The activation of the UPR aims to restore ER homeostasis by attenuation of ER client protein translation, increased transcription of ER chaperones and ER associated degradation (ERAD) factors. If ER stress is too long or too strong, cells may die. The main signaling branch of the UPR is mediated by the ER transmembrane protein IRE1 and the transcription factor Xbp1. The active, spliced form of Xbp1 (Xbp1spliced) acts as a transcription factor with protective function against toxic protein aggregation. However, overexpression of Xbp1spliced in the developing Drosophila eye causes degeneration of the eye (“glossy” eye phenotype).(...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Saúde

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose an extension of the firefly algorithm (FA) to multi-objective optimization. FA is a swarm intelligence optimization algorithm inspired by the flashing behavior of fireflies at night that is capable of computing global solutions to continuous optimization problems. Our proposal relies on a fitness assignment scheme that gives lower fitness values to the positions of fireflies that correspond to non-dominated points with smaller aggregation of objective function distances to the minimum values. Furthermore, FA randomness is based on the spread metric to reduce the gaps between consecutive non-dominated solutions. The obtained results from the preliminary computational experiments show that our proposal gives a dense and well distributed approximated Pareto front with a large number of points.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insoluble and fibrillar forms of a-synuclein are the major components of Lewy bodies, a hallmark of several sporadic and inherited neurodegenerative diseases known as synucleinopathies. a-Synuclein is a natural unfolded and aggregation-prone protein that can be degraded by the ubiquitin-proteasomal system and the lysosomal degradation pathways. a-Synuclein is a target of the main cellular proteolytic systems, but it is also able to alter their function further, contributing to the progression of neurodegeneration. Aging, a major risk for synucleinopathies, is associated with a decrease activity of the proteolytic systems, further aggravating this toxic looping cycle. Here, the current literature on the basic aspects of the routes for a-synuclein clearance, as well as the consequences of the proteolytic systems collapse, will be discussed. Finally, particular focus will be given to the sirtuins's role on proteostasis regulation, since their modulation emerged as a promising therapeutic strategy to rescue cells from a-synuclein toxicity. The controversial reports on the potential role of sirtuins in the degradation of a-synuclein will be discussed. Connection between sirtuins and proteolytic systems is definitely worth of further studies to increase the knowledge that will allow its proper exploration as new avenue to fight synucleinopathies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gold nanorods (AuNRs) have emerged as an exceptional nanotool for a myriad of applications ranging from cancer therapy to tissue engineering. However, their surface modification with biocompatible and stabilizing biomaterials is crucial to allow their use in a biological environment. Herein, low-acyl gellan gum (GG) was used to coat AuNRs surface, taking advantage of its stabilizing, biocompatible and gelling features. The layer-by-layer based strategy implied the successive deposition of poly(acrylic acid), poly(allylamine hydrochloride) and GG, which allowed the formation of a GG hydrogel-like shell with 7 nm thickness around individual AuNRs. Stability studies in a wide range of pH and salt concentrations showed that the polysaccharide coating can prevent AuNRs aggregation. Moreover, a reversible pH-responsive feature of the nanoparticles was observed. Cytocompatibility and osteogenic ability of GG-coated AuNRs was also addressed. After 14 days of culturing within SaOS-2, an osteoblast-like cell line, in vitro studies revealed that AuNRs-GG exhibit no cytotoxicity, were internalized by the cells and localized inside lysosomes. AuNRs-GG combined with osteogenic media enhanced the mineralization capacity two-fold, as compared to cells exposed to osteogenic media alone. The proposed system has shown interesting features for osteogenesis, and further insights might be relevant for drug delivery, tissue engineering and regenerative medicine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Biologia Molecular e Ambiental (área de especialização em Biologia Celular e Saúde).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inspired by the relational algebra of data processing, this paper addresses the foundations of data analytical processing from a linear algebra perspective. The paper investigates, in particular, how aggregation operations such as cross tabulations and data cubes essential to quantitative analysis of data can be expressed solely in terms of matrix multiplication, transposition and the Khatri–Rao variant of the Kronecker product. The approach offers a basis for deriving an algebraic theory of data consolidation, handling the quantitative as well as qualitative sides of data science in a natural, elegant and typed way. It also shows potential for parallel analytical processing, as the parallelization theory of such matrix operations is well acknowledged.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Saúde

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitosan coating was applied in Lactoferrin (Lf)-Glycomacropeptide (GMP) nanohydrogels by layer-by-layer coating process. A volume ratio of 0.1 of Lf-GMP nanohydrogels (0.2 mg.mL-1, at pH 5.0) to chitosan (1 mg.mL-1, at pH 3) demonstrated to be the optimal condition to obtain stable nanohydrogels with size of 230 ± 12 nm, a PdI of 0.22 ± 0.02 and a -potential of 30.0 ± 0.15 mV. Transmission electron microscopy (TEM) images showed that the application of chitosan coating in Lf-GMP did not affect the spherical shape of nanohydrogels and confirmed the low aggregation of nanohydrogels in solution. The analysis of chemical interactions between chitosan and Lf-GMP nanohydrogels were performed by Fourier transform infrared spectroscopy (FTIR) and by circular dichroism (CD) that revealed that a specific chemical interaction occurring between functional groups of protein-based nanohydrogels and active groups of the chitosan was established. The effect of chitosan coating on release mechanisms of Lf-GMP nanohydrogels at acid conditions (pH 2, 37 ºC) was evaluated by the encapsulation of a model compound (caffeine) in these systems. Linear Superposition Model was used to fit the experimental data and revealed that Fick and relaxation mechanisms are involved in caffeine release. It was also observed that the Fick contribution increase with the application of chitosan coating. In vitro gastric digestion was performed with Lf-GMP nanohydrogels and Lf-GMP nanohydrogels with chitosan coating and it was observed that the presence of chitosan improve the stability of Lf and GMP (proteins were hydrolysed at a slower rate and were present in solution by longer time). Native electrophoreses revealed that the nanohydrogels without coating remained intact in solution until 15 min and with chitosan coating remained intact until 60 min, during gastric digestion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formation of whey protein isolate protein aggregates under the influence of moderate electric fields upon ohmic heating (OH) has been monitored through evaluation of molecular protein unfolding, loss of its solubility, and aggregation. To shed more light on the microstructure of the protein aggregates produced by OH, samples were assayed by transmission electron microscopy (TEM). Results show that during early steps of an OH thermal treatment, aggregation of whey proteins can be reduced with a concomitant reduction of the heating chargeby reducing the come-up time (CUT) needed to reach a target temperatureand increase of the electric field applied (from 6 to 12 V cm1). Exposure of reactive free thiol groups involved in molecular unfolding of -lactoglobulin (-lg) can be reduced from 10 to 20 %, when a CUT of 10 s is combined with an electric field of 12 V cm1. Kinetic and multivariate analysis evidenced that the presence of an electric field during heating contributes to a change in the amplitude of aggregation, as well as in the shape of the produced aggregates. TEM discloses the appearance of small fibrillar aggregates upon the influence of OH, which have recognized potential in the functionalization of food protein networks. This study demonstrated that OH technology can be used to tailor denaturation and aggregation behavior of whey proteins due to the presence of a constant electric field together with the ability to provide a very fast heating, thus overcoming heat transfer limitations that naturally occur during conventional thermal treatments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Saúde