998 resultados para Aggregate Surface
Physical properties and particle-size fractions of soil organic matter in crop-livestock integration
Resumo:
Crop-livestock integration represents an interesting alternative of soil management, especially in regions where the maintenance of cover crops in no-tillage systems is difficult. The objective of this study was to evaluate soil physical and chemical properties, based on the hypothesis that a well-managed crop-livestock integration system improves the soil quality and stabilizes the system. The experiment was set up in a completely randomized design, with five replications. The treatments were arranged in a 6 x 4 factorial design, to assess five crop rotation systems in crop-livestock integration, and native forest as reference of soil undisturbed by agriculture, in four layers (0.0-0.05; 0.05-0.10; 0.10-0.15 and 0.15-0.20 m). The crop rotation systems in crop-livestock integration promoted changes in soil physical and chemical properties and the effects of the different systems were mainly detected in the surface layer. The crops in integrated crop-livestock systems allowed the maintenance of soil carbon at levels equal to those of the native forest, proving the efficiency of these systems in terms of soil conservation. The systems influenced the environmental stability positively; the soil quality indicator mineral-associated organic matter was best related to aggregate stability.
Resumo:
We show that time-dependent couplings may lead to nontrivial scaling properties of the surface fluctuations of the asymptotic regime in nonequilibrium kinetic roughening models. Three typical situations are studied. In the case of a crossover between two different rough regimes, the time-dependent coupling may result in anomalous scaling for scales above the crossover length. In a different setting, for a crossover from a rough to either a flat or damping regime, the time-dependent crossover length may conspire to produce a rough surface, although the most relevant term tends to flatten the surface. In addition, our analysis sheds light into an existing debate in the problem of spontaneous imbibition, where time-dependent couplings naturally arise in theoretical models and experiments.
Resumo:
A simple model for a dimer molecular diffusion on a crystalline surface, as a function of temperature, is presented. The dimer is formed by two particles coupled by a quadratic potential. The dimer diffusion is modeled by an overdamped Langevin equation in the presence of a two-dimensional periodic potential. Numerical simulation¿s results exhibit some dynamical properties observed, for example, in Si2 diffusion on a silicon [100] surface. They can be used to predict the value of the effective friction parameter. Comparison between our model and experimental measurements is presented.
Resumo:
We study the minimal class of exact solutions of the Saffman-Taylor problem with zero surface tension, which contains the physical fixed points of the regularized (nonzero surface tension) problem. New fixed points are found and the basin of attraction of the Saffman-Taylor finger is determined within that class. Specific features of the physics of finger competition are identified and quantitatively defined, which are absent in the zero surface tension case. This has dramatic consequences for the long-time asymptotics, revealing a fundamental role of surface tension in the dynamics of the problem. A multifinger extension of microscopic solvability theory is proposed to elucidate the interplay between finger widths, screening and surface tension.
Resumo:
Although the influence of clay mineralogy on soil physical properties has been widely studied, spatial relationships between these features in Alfisols have rarely been examined. The purpose of this work was to relate the clay minerals and physical properties of an Alfisol of sandstone origin in two slope curvatures. The crystallographic properties such as mean crystallite size (MCS) and width at half height (WHH) of hematite, goethite, kaolinite and gibbsite; contents of hematite and goethite; aluminium substitution (AS) and specific surface area (SSA) of hematite and goethite; the goethite/(goethite+hematite) and kaolinite/(kaolinite+gibbsite) ratios; and the citrate/bicarbonate/dithionite extractable Fe (Fe d) were correlated with the soil physical properties through Pearson correlation coefficients and cross-semivariograms. The correlations found between aluminium substitution in goethite and the soil physical properties suggest that the degree of crystallinity of this mineral influences soil properties used as soil quality indicators. Thus, goethite with a high aluminium substitution resulted in large aggregate sizes and a high porosity, and also in a low bulk density and soil penetration resistance. The presence of highly crystalline gibbsite resulted in a high density and micropore content, as well as in smaller aggregates. Interpretation of the cross-semivariogram and classification of landscape compartments in terms of the spatial dependence pattern for the relief-dependent physical and mineralogical properties of the soil proved an effective supplementary method for assessing Pearson correlations between the soil physical and mineralogical properties.
Resumo:
Studies on water retention and availability are scarce for subtropical or humid temperate climate regions of the southern hemisphere. The aims of this study were to evaluate the relations of the soil physical, chemical, and mineralogical properties with water retention and availability for the generation and validation of continuous point pedotransfer functions (PTFs) for soils of the State of Santa Catarina (SC) in the South of Brazil. Horizons of 44 profiles were sampled in areas under different cover crops and regions of SC, to determine: field capacity (FC, 10 kPa), permanent wilting point (PWP, 1,500 kPa), available water content (AW, by difference), saturated hydraulic conductivity, bulk density, aggregate stability, particle size distribution (seven classes), organic matter content, and particle density. Chemical and mineralogical properties were obtained from the literature. Spearman's rank correlation analysis and path analysis were used in the statistical analyses. The point PTFs for estimation of FC, PWP and AW were generated for the soil surface and subsurface through multiple regression analysis, followed by robust regression analysis, using two sets of predictive variables. Soils with finer texture and/or greater organic matter content retain more moisture, and organic matter is the property that mainly controls the water availability to plants in soil surface horizons. Path analysis was useful in understanding the relationships between soil properties for FC, PWP and AW. The predictive power of the generated PTFs to estimate FC and PWP was good for all horizons, while AW was best estimated by more complex models with better prediction for the surface horizons of soils in Santa Catarina.
Resumo:
Peatlands are soil environments that store carbon and large amounts of water, due to their composition (90 % water), low hydraulic conductivity and a sponge-like behavior. It is estimated that peat bogs cover approximately 4.2 % of the Earth's surface and stock 28.4 % of the soil carbon of the planet. Approximately 612 000 ha of peatlands have been mapped in Brazil, but the peat bogs in the Serra do Espinhaço Meridional (SdEM) were not included. The objective of this study was to map the peat bogs of the northern part of the SdEM and estimate the organic matter pools and water volume they stock. The peat bogs were pre-identified and mapped by GIS and remote sensing techniques, using ArcGIS 9.3, ENVI 4.5 and GPS Track Maker Pro software and the maps validated in the field. Six peat bogs were mapped in detail (1:20,000 and 1:5,000) by transects spaced 100 m and each transect were determined every 20 m, the UTM (Universal Transverse Mercator) coordinates, depth and samples collected for characterization and determination of organic matter, according to the Brazilian System of Soil Classification. In the northern part of SdEM, 14,287.55 ha of peatlands were mapped, distributed over 1,180,109 ha, representing 1.2 % of the total area. These peatlands have an average volume of 170,021,845.00 m³ and stock 6,120,167 t (428.36 t ha-1) of organic matter and 142,138,262 m³ (9,948 m³ ha-1) of water. In the peat bogs of the Serra do Espinhaço Meridional, advanced stages of decomposing (sapric) organic matter predominate, followed by the intermediate stage (hemic). The vertical growth rate of the peatlands ranged between 0.04 and 0.43 mm year-1, while the carbon accumulation rate varied between 6.59 and 37.66 g m-2 year-1. The peat bogs of the SdEM contain the headwaters of important water bodies in the basins of the Jequitinhonha and San Francisco Rivers and store large amounts of organic carbon and water, which is the reason why the protection and preservation of these soil environments is such an urgent and increasing need.
Resumo:
The use of cover crops in vineyards is a conservation practice with the purpose of reducing soil erosion and improving the soil physical quality. The objective of this study was to evaluate cover crop species and management systems on soil physical properties and grape yield. The experiment was carried out in Bento Gonçalves, RS, Southern Brazil, on a Haplic Cambisol, in a vineyard established in 1989, using White and Rose Niagara grape (Vitis labrusca L.) in a horizontal, overhead trellis system. The treatments were established in 2002, consisting of three cover crops: spontaneous species (SS), black oat (Avena strigosa Schreb) (BO), and a mixture of white clover (Trifolium repens L.), red clover (Trifolium pratense L.) and annual rye-grass (Lolium multiflorum L.) (MC). Two management systems were applied: desiccation with herbicide (D) and mechanical mowing (M). Soil under a native forest (NF) area was collected as a reference. The experimental design consisted of completely randomized blocks, with three replications. The soil physical properties in the vine rows were not influenced by cover crops and were similar to the native forest, with good quality of the soil structure. In the inter-rows, however, there was a reduction in biopores, macroporosity, total porosity and an increase in soil density, related to the compaction of the surface soil layer. The M system increased soil aggregate stability compared to the D system. The treatments affected grapevine yield only in years with excess or irregular rainfall.
Resumo:
In modern agriculture, several factors cause changes in the soil physical properties. The time of establishment of a crop (plantation age) and the slope are examples of factors that moderate the impact of mechanized operations on the soil structure. The objective of this study was to analyze the effect of machinery traffic on the physical properties of a Red-Yellow Latosol under coffee plantations with different ages (2, 7, 18, and 33 years) and slope positions (3, 9 and 15 %). Samples were collected from three positions between coffee rows (lower wheel track, inter-row and upper wheel track) and at two depths (surface layer and sub-surface). Changes in the total porosity, macroporosity, microporosity, organic matter, bulk density, and aggregate stability were investigated. Our results showed that the slope influenced the organic matter content, microporosity and aggregate stability. The soil samples under the inter-row were minimally damaged in their structure, compared to those from under the lower and upper wheel track, while the structure was better preserved under the lower than the upper track. The time since the establishment of the crop, i.e., the plantation age, was the main factor determining the extent of structural degradation in the coffee plantation.
Resumo:
Surface topography and light scattering were measured on 15 samples ranging from those having smooth surfaces to others with ground surfaces. The measurement techniques included an atomic force microscope, mechanical and optical profilers, confocal laser scanning microscope, angle-resolved scattering, and total scattering. The samples included polished and ground fused silica, silicon carbide, sapphire, electroplated gold, and diamond-turned brass. The measurement instruments and techniques had different surface spatial wavelength band limits, so the measured roughnesses were not directly comparable. Two-dimensional power spectral density (PSD) functions were calculated from the digitized measurement data, and we obtained rms roughnesses by integrating areas under the PSD curves between fixed upper and lower band limits. In this way, roughnesses measured with different instruments and techniques could be directly compared. Although smaller differences between measurement techniques remained in the calculated roughnesses, these could be explained mostly by surface topographical features such as isolated particles that affected the instruments in different ways.
Resumo:
Establishment of the water layer in an irrigated rice crop leads to consumption of free oxygen in the soil which enters in a chemical reduction process mediated by anaerobic microorganisms, changing the crop environment. To maintain optimal growth in an environment without O2, rice plants develop pore spaces (aerenchyma) that allow O2 transport from air to the roots. Carrying capacity is determined by the rice genome and it may vary among cultivars. Plants that have higher capacity for formation of aerenchyma should theoretically carry more O2 to the roots. However, part of the O2 that reaches the roots is lost due to permeability of the roots and the O2 gradient created between the soil and roots. The O2 that is lost to the outside medium can react with chemically reduced elements present in the soil; one of them is iron, which reacts with oxygen and forms an iron plaque on the outer root surface. Therefore, evaluation of the iron plaque and of the formation of pore spaces on the root can serve as a parameter to differentiate rice cultivars in regard to the volume of O2 transported via aerenchyma. An experiment was thus carried out in a greenhouse with the aim of comparing aerenchyma and iron plaque formation in 13 rice cultivars grown in flooded soils to their formation under growing conditions similar to a normal field, without free oxygen. The results indicated significant differences in the volume of pore spaces in the roots among cultivars and along the root segment in each cultivar, indicating that under flooded conditions the genetic potential of the plant is crucial in induction of cell death and formation of aerenchyma in response to lack of O2. In addition, the amount of Fe accumulated on the root surface was different among genotypes and along the roots. Thus, we concluded that the rice genotypes exhibit different responses for aerenchyma formation, oxygen release by the roots and iron plaque formation, and that there is a direct relationship between porosity and the amount of iron oxidized on the root surface.
Resumo:
We present an ellipsometric technique and ellipsometric analysis of repetitive phenomena, based on the experimental arrangement of conventional phase modulated ellipsometers (PME) c onceived to study fast surface phenomena in repetitive processes such as periodic and triggered experiments. Phase modulated ellipsometry is a highly sensitive surface characterization technique that is widely used in the real-time study of several processes such as thin film deposition and etching. However, fast transient phenomena cannot be analyzed with this technique because precision requirements limit the data acquisition rate to about 25 Hz. The presented new ellipsometric method allows the study of fast transient phenomena in repetitive processes with a time resolution that is mainly limited by the data acquisition system. As an example, we apply this new method to the study of surface changes during plasma enhanced chemical vapor deposition of amorphous silicon in a modulated radio frequency discharge of SiH4. This study has revealed the evolution of the optical parameters of the film on the millisecond scale during the plasma on and off periods. The presented ellipsometric method extends the capabilities of PME arrangements and permits the analysis of fast surface phenomena that conventional PME cannot achieve.
Resumo:
We describe the design, calibration, and performance of surface forces apparatus with the capability of illumination of the contact interface for spectroscopic investigation using optical techniques. The apparatus can be placed in the path of a Nd-YAG laser for studies of the linear response or the second harmonic and sum-frequency generation from a material confined between the two surfaces. In addition to the standard fringes of equal chromatic order technique, which we have digitized for accurate and fast analysis, the distance of separation can be measured with a fiber-optic interferometer during spectroscopic measurements (2 Å resolution and 10 ms response time). The sample approach is accomplished through application of a motor drive, piezoelectric actuator, or electromagnetic lever deflection for variable degrees of range, sensitivity, and response time. To demonstrate the operation of the instrument, the stepwise expulsion of discrete layers of octamethylcyclotetrasiloxane from the contact is shown. Lateral forces may also be studied by using piezoelectric bimorphs to induce and direct the motion of one surface.
Resumo:
Selostus: Typen ja fosforin kulkeutuminen pinta- ja salaojavalunnassa lietelannalla ja NKP-lannoitteella lannoitetulta nurmelta