958 resultados para Age-dependent Branching Processes with Immigration at Zero State


Relevância:

100.00% 100.00%

Publicador:

Resumo:

I-compounds are newly discovered covalent DNA modifications detected by the $\sp{32}$P-postlabeling assay. They are age-dependent, tissue-specific and sex-different. The origin(s), chemistry and function(s) of I-compounds are unknown. The total level of I-compounds in 8-10 month old rat liver is 1 adduct in 10$\sp7$ nucleotides, which is not neglectable. It is proposed that I-compounds may play a role in spontaneous tumorigenesis and aging.^ In the present project, I-compounds were investigated by several different approaches. (1) Dietary modulation of I-compounds. (2) Comparison of I-compounds with persistent carcinogen DNA adducts and 5-methylcytosine. (3) Strain differences of I-compounds in relation to organ site spontaneous tumorigenesis. (4) Effects of nongenotoxic hepatocarcinogenes on I-compounds.^ It was demonstrated that the formation of I-compounds is diet-related. Rats fed natural ingredient diet exhibited more complex I-spot patterns and much higher levels than rats fed purified diet. Variation of major nutrients (carbohydrate, protein and fat) in the diet, produced quantitative differences in I-compounds of rat liver and kidney DNAs. Physiological level of vitamin E in the diet reduced intensity of one I-spot compared with vitamin E deficient diet. However, extremely high level of vitamin E in the diet gave extra spot and enhanced the intensities of some I-spots.^ In regenerating rat liver, I-compounds levels were reduced, as carcinogen DNA adducts, but not 5-methylcytosine, i.e. a normal DNA modification.^ Animals with higher incidences of spontaneous tumor or degenerative diseases tended to have a lower level of I-compounds.^ Choline devoid diet induced a drastic reduction of I-compound level in rat liver compared with choline supplemented diet. I-compound levels were reduced after multi-doses of carbon tetrachloride (CCl$\sb4$) exposure in rats and single dose exposure in mice. An inverse relationship was observed between I-compound level and DNA replication rate. CCl$\sb4$-related DNA adduct was detected in mice liver and intensities of some I-spots were enhanced 24 h after a single dose exposure.^ The mechanisms and explanations of these observations will be discussed. I-compounds are potentially useful indicators in carcinogenesis studies. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) is the leading cause of death in the United States. One manifestation of CVD known to increase mortality is an enlarged, or hypertrophic heart. Hypertrophic cardiomyocytes adapt to increased contractile demand at the genetic level with a re-emergence of the fetal gene program and a downregulation of fatty acid oxidation genes with concomitant increased reliance on glucose-based metabolism. To understand the transcriptional regulatory pathways that implement hypertrophic directives we analyzed the upstream promoter region of the muscle specific isoform of the nuclear-encoded mitochondrial gene, carnitine palmitoyltransferase-1β (CPT-1β) in cultured rat neonatal cardiac myocytes. This enzyme catalyzes the rate-limiting step of fatty acid entry into β-oxidation and is downregulated in cardiac hypertrophy and failure, making it an attractive model for the study of hypertrophic gene regulation and metabolic adaptations. We demonstrate that the muscle-enriched transcription factors GATA-4 and SRF synergistically activate CPT-1β; moreover, DNA binding to cognate sites and intact protein structure are required. This mechanism coordinates upregulation of energy generating processes with activation of the energy consuming contractile promoter for cardiac α-actin. We hypothesized that fatty acid or glucose responsive transcription factors may also regulate CPT-1β. Oleate weakly stimulates CPT-1β activity; in contrast, the glucose responsive Upstream Stimulatory Factors (USF) dramatically depresses the CPT-1β reporter. USF regulates CPT-1β through a novel physical interaction with the cofactor PGC-1 and abrogation of MEF2A/PGC-1 synergistic stimulation. In this way, USF can inversely regulate metabolic gene programs and may play a role in the shift of metabolic substrate preference seen in hypertrophy. Failing hearts have elevated expression of the nuclear hormone receptor COUP-TF. We report that COUP-TF significantly suppresses reporter transcription independent of DNA binding and specific interactions with GATA-4, Nkx2.5 or USF. In summary, CPT-1β transcriptional regulation integrates mitochondrial gene expression with two essential cardiac functions: contraction and metabolic substrate oxidation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-resolution biochronology is presented for the Late Quaternary of the central Mediterranean. In the Late Pleistocene-Holocene successions three assemblage zones are distinguished on the basis of frequency patterns of planktic foraminifera. The age of these zones is determined by Accelerator Mass Spectrometry (AMS)14C dating. The zonal boundaries are dated at 12,700 yr B.P. (the end of Termination Ia) and 9600 yr B.P. (the start of Termination Ib), respectively. The AMS dates show that major changes in the planktic and benthic realms occurred synchronously over wide areas, although records of individual species may show important regional differences. In the studied areas, resedimentation processes revealed by anomalous successions of14C dates, play a far more important role than indicated by the sedimentological and micropaleontological data. Possibly these processes contribute to the very high accumulation rates in the glacial Zone III. Although the AMS technique has increased the accuracy of14C-measurements, admixture of older carbonate may still lead to substantial age differences between areas with different sedimentary regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through scanning electron microscope analysis of sediment microfabric, we have evaluated variations in high-resolution shipboard physical properties (index properties and shear strength), sediment components (smear slide determinations), and shore-based calcium carbonate and biogenic silica data from Site 751 (Kerguelen Plateau). The stratigraphic section at this site records a change in biogenic ooze composition from predominantly calcareous (nannofossil) to siliceous (diatom) ooze from ~23 Ma to the present, reflecting expansion of Antarctic water masses during the late Neogene. The profound change in physical properties and sediment character at 40.1 mbsf (~5-6 Ma) evidently records the northward movement of the Polar Front and a change in absolute accumulation rates of sediment at this site. Trends in geotechnical properties with depth at Site 751 allowed us to subdivide the sedimentary column into a number of geotechnical units that reflect changes in depositional and postdepositional processes with time. Geotechnical properties are sensitive to changing sedimentary inputs of primarily siliceous and calcareous microfossils. This allows us to study the physical nature of biostratigraphically-identified hiatuses and variations in environmental conditions linked to the migration of the Polar Front across this region. The analysis of geotechnical properties permits a more detailed division of the sedimentary column than is possible from shipboard lithologic descriptions alone. Our study of the sedimentary microfabric indicates that randomly oriented, elongate pennate diatom valves compose the sediments with highest porosity and water content values, and the lowest density values (wet bulk, dry bulk, and grain density). Conversely, sediments composed of nannofossils and disassociated nannofossil crystallites and little or no siliceous remains have the lowest porosity and water content values, and the highest density values. Samples of mixed siliceous/calcareous composition have intermediate physical property values, but these vary according to the nature of the sedimentary matrix and the state of preservation of individual skeletal elements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ocean quahog, Arctica islandica is the longest-lived non-colonial animal known to science. A maximum individual age of this bivalve of 405 years has been found in a population off the north western coast of Iceland. Conspicuously shorter maximum lifespan potentials (MLSPs) were recorded from other populations of A. islandica in European waters (e.g. Kiel Bay: 30 years, German Bight: 150 years) which experience wider temperature and salinity fluctuations than the clams from Iceland. The aim of my thesis was to identify possible life-prolonging physiological strategies in A. islandica and to examine the modulating effects of extrinsic factors (e.g. seawater temperature, food availability) and intrinsic factors (e.g. species-specific behavior) on these strategies. Burrowing behavior and metabolic rate depression (MRD), tissue-specific antioxidant and anaerobic capacities as well as cell-turnover (= apoptosis and proliferation) rates were investigated in A. islandica from Iceland and the German Bight. An inter-species comparison of the quahog with the epibenthic scallop Aequipecten opercularis (MLSP = 8-10 years) was carried out in order to determine whether bivalves with short lifespans and different lifestyles also feature a different pattern in cellular maintenance and repair. The combined effects of a low-metabolic lifestyle, low oxidative damage accumulation, and constant investment into cellular protection and tissue maintenance, appear to slow-down the process of physiological aging in A. islandica and to afford the extraordinarily long MLSP in this species. Standard metabolic rates were lower in A. islandica when compared to the shorter-lived A. opercularis. Furthermore, A. islandica regulate mantle cavity water PO2 to mean values < 5 kPa, a PO2 at which the formation of reactive oxygen species (ROS) in isolated gill tissues of the clams was found to be 10 times lower than at normoxic conditions (21 kPa). Burrowing and metabolic rate depression (MRD) in Icelandic specimens were more pronounced in winter, possibly supported by low seawater temperature and food availability, and seem to be key energy-saving and life-prolonging parameters in A. islandica. The signaling molecule nitric oxide (NO) may play an important role during the onset of MRD in the ocean quahog by directly inhibiting cytochome-c-oxidase at low internal oxygenation upon shell closure. In laboratory experiments, respiration of isolated A. islandica gills was completely inhibited by chemically produced NO at low experimental PO2 <= 10 kPa. During shell closure, mantle cavity water PO2 decreased to 0 kPa for longer than 24 h, a state in which ROS production is supposed to subside. Compared to other mollusk species, onset of anaerobic metabolism is late in A. islandica in the metabolically reduced state. Increased accumulation of the anaerobic metabolite succinate was initially detected in the adductor muscle of the clams after 3.5 days under anoxic incubation or in burrowed specimens. A ROS-burst was absent in isolated gill tissue of the clams following hypoxia (5 kPa)-reoxygenation (21 kPa). Accordingly, neither the activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), nor the specific content of the ROS-scavenger glutathione (GSH) was enhanced in different tissues of the ocean quahog after 3.5 days of self-induced or forced hypoxia/anoxia to prepare for an oxidative burst. While reduced ROS formation compared to routine levels lowers oxidative stress during MRD and also during surfacing, the general preservation of high cellular defense and the efficient removal and replacement of damaged cells over lifetime seem to be of crucial importance in decelerating the senescent decline in tissues of A. islandica. Along with stable antioxidant protection over 200 years of age, proliferation rates and apoptosis intensities in most investigated tissues of the ocean quahog were low, but constant over 140 years of age. Accordingly, age-dependent accumulations of protein and lipid oxidation products are lower in A. islandica tissues when compared to the shorter-lived bivalve A. opercularis. The short-lived swimming scallop is a model bivalve species representing the opposite life and aging strategy to A. islandica. In this species permanently high energy throughput, reduced investment into antioxidant defense with age, and higher accumulation of oxidation products are met by higher cell turnover rates than in the ocean quahog. The only symptoms of physiological change over age ever found in A. islandica were decreasing cell turnover rates in the heart muscle over a lifetime of 140 years. This may either indicate higher damage levels and possibly ongoing loss of functioning in the heart of aging clams, or, the opposite, lower rates of cell damage and a reduced need for cell renewal in the heart tissue of A. islandica over lifetime. Basic physiological capacities of different A. islandica populations, measured at controlled laboratory conditions, could not explain considerable discrepancies in population specific MLSPs. For example, levels of tissue-specific antioxidant capacities and cell turnover rates were similarly high in individuals from the German Bight and from Iceland. Rather than genetic differences, the local impacts of environmental conditions on behavioral and physiological traits in the ocean quahog seem to be responsible for differences in population-specific MLSPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of interstitial waters obtained from DSDP Leg 64 drill sites in the Gulf of California have revealed information both on early diagenetic processes in the sediments resulting from the breakdown of organic matter and on hydrothermal interactions between sediments and hot doleritic sill intrusions into the sediments. In all the sites drilled sulfate reduction occurred as a result of rapid sediment accumulation rates and of relatively high organic carbon contents; in most sites methane production occurred after sulfate depletion. Associated with this methane production are high values of alkalinity and high concentrations of dissolved ammonia, which causes ion exchange processes with the solid phases leading to intermediate maxima in Mg++, K+, Rb+, and Sr++(?). Though this phenomenon is common in Leg 64 drill sites, these concentration reversals had been noticed previously only in Site 262 (Timor Trough) and Site 440 (Japan Trench). Penetrating, hot dolerite sills have led to substantial hydrothermal alteration in sediments at sites drilled in the Guaymas Basin. Site 477 is an active hydrothermal system in which the pore-water chemistry typically shows depletions in sulfate and magnesium and large increases in lithium, potassium, rubidium, calcium, strontium, and chloride. Strontium isotope data also indicate large contributions of volcanic matter and basalt to the pore-water strontium concentrations. At Sites 478 and 481 dolerite sill intrusions have cooled to ambient temperatures but interstitial water concentrations of Li+, Rb+, Sr++ , and Cl- show the gradual decay of a hydrothermal signal that must have been similar to the interstitial water chemistry at Site 477 at the time of sill intrusion. Studies of oxygen isotopes of the interstitial waters at Site 481 indicate positive values of d18O (SMOW) as a result of high-temperature alteration reactions occurring in the sills and the surrounding sediments. A minimum in dissolved chloride at about 100-125 meters sub-bottom at Sites 478, 481, and particularly Site 479 records a possible paleosalinity signal, associated with an event that substantially lowered salinities in the inner parts of the Gulf of California during Quaternary time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New K-Ar datings of Meso-Cenozoic volcanites from the Sea of Japan and the Sea of Okhotsk were obtained. They enabled to reason age of different volcanic complexes. Basalts from volcanic edifices of the Sea of Japan Basin were determined as Middle Miocene - Pliocene (13.1-4.5 Ma) in age, which correlates well with geological evolution of the Sea of Japan. New datings for basalts from the continental slope of the South Primorye (11.1 Ma) confirm their age being similar to volcanites from Neogene basalt plateaus of the South Primorye; they are very similar not only in age but also in mineral and chemical compositions. Datings for rocks from the andesite series of the Northern Yamato Rise (24.7, 21.5 Ma) show that they are coeval with volcanites of the trachyandesite complex; this allows to combine them into one Oligocene - Early Miocene complex. In the Sea of Okhotsk datings of volcanite samples from three complexes were obtained: Cretaceous, Paleogene, and Pliocene-Pleistocene. Cretaceous magmatic rocks make part of basements of large rises in the Sea of Okhotsk, and Paleogene and Pliocene - Pleistocene complexes illustrate stages of Cenozoic tectono-magmatic activation of the region.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: