932 resultados para Active Site Probes
Resumo:
The protein component of ribonuclease P (RNase P) binds to the RNA subunit, forming a functional ribonucleoprotein complex in vivo and enhancing the affinity of the precursor tRNA (pre-tRNA) substrate. Photocrosslinking experiments with pre-tRNA bound to RNase P reconstituted with the protein component of Bacillus subtilis ribonuclease P (P protein) site specifically modified with a crosslinking reagent indicate that: (i) the central cleft of P protein directly interacts with the single-stranded 5′ leader sequence of pre-tRNA, and (ii) the orientation and register of the pre-tRNA leader sequence in the central cleft places the protein component in close proximity to the active site. This unique mode of interaction suggests that the catalytic active site in RNase P occurs near the interface of RNA and protein. In contrast to other ribonucleoprotein complexes where the protein mainly stabilizes the active tertiary fold of the RNA, a critical function of the protein component of RNase P is to alter substrate specificity and enhance catalytic efficiency.
Resumo:
The adenylyl and guanylyl cyclases catalyze the formation of 3′,5′-cyclic adenosine or guanosine monophosphate from the corresponding nucleoside 5′-triphosphate. The guanylyl cyclases, the mammalian adenylyl cyclases, and their microbial homologues function as pairs of homologous catalytic domains. The crystal structure of the rat type II adenylyl cyclase C2 catalytic domain was used to model by homology a mammalian adenylyl cyclase C1-C2 domain pair, a homodimeric adenylyl cyclase of Dictyostelium discoideum, a heterodimeric soluble guanylyl cyclase, and a homodimeric membrane guanylyl cyclase. Mg2+ATP or Mg2+GTP were docked into the active sites based on known stereochemical constraints on their conformation. The models are consistent with the activities of seven active-site mutants. Asp-310 and Glu-432 of type I adenylyl cyclase coordinate a Mg2+ ion. The D310S and D310A mutants have 10-fold reduced Vmax and altered [Mg2+] dependence. The NTP purine moieties bind in mostly hydrophobic pockets. Specificity is conferred by a Lys and an Asp in adenylyl cyclase, and a Glu, an Arg, and a Cys in guanylyl cyclase. The models predict that an Asp from one domain is a general base in the reaction, and that the transition state is stabilized by a conserved Asn-Arg pair on the other domain.
Resumo:
The relationship between the enzymatic and the transcriptional activity of the bifunctional protein pterin-4a-carbinolamine dehydratase/dimerization cofactor for hepatocyte nuclear factor 1 (DCoH) has been elucidated by site-directed mutagenesis. DCoH dimers harbor a binding site for hepatocyte nuclear factor 1 (HNF1), two active centers that bind pterins, and a saddle-shaped surface that resembles nucleic acid binding domains. Two domains of the protein have been selectively targeted to determine if a change in one activity affects the other. No strong correlation has been found, supporting the idea that carbinolamine dehydratase activity is not required for HNF1 binding in vitro or transcriptional coactivation in vivo. Double mutations in the active center, however, influence the in vivo transcriptional activity but not HNF1 binding. This finding suggests that some active center residues also are used during transcription, possibly for binding of another (macro)molecule. Several mutations in the saddle led to a surprising increase in transcription, therefore linking this domain to transcriptional regulation as well. The transcriptional function of DCoH therefore is composed of two parts, HNF1 binding and another contributing effect that involves the active site and, indirectly, the saddle.
Resumo:
The ribonucleotide reductases from three ancient eubacteria, the hyperthermophilic Thermotoga maritima (TM), the radioresistant Deinococcus radiodurans (DR), and the thermophilic photosynthetic Chloroflexus aurantiacus, were found to be coenzyme-B12 (class II) enzymes, similar to the earlier described reductases from the archaebacteria Thermoplasma acidophila and Pyrococcus furiosus. Reduction of CDP by the purified TM and DR enzymes requires adenosylcobalamin and DTT. dATP is a positive allosteric effector, but stimulation of the TM enzyme only occurs close to the temperature optimum of 80–90°C. The TM and DR genes were cloned by PCR from peptide sequence information. The TM gene was sequenced completely and expressed in Escherichia coli. The deduced amino acid sequences of the two eubacterial enzymes are homologous to those of the archaebacteria. They can also be aligned to the sequence of the large protein of the aerobic E. coli ribonucleotide reductase that belongs to a different class (class I), which is not dependent on B12. Structure determinations of the E. coli reductase complexed with substrate and allosteric effectors earlier demonstrated a 10-stranded β/α-barrel in the active site. From the conservation of substrate- and effector-binding residues we propose that the B12-dependent class II enzymes contain a similar barrel.
Resumo:
Biosynthesis of aromatic amino acids in plants, many bacteria, and microbes relies on the enzyme 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, a prime target for drugs and herbicides. We have identified the interaction of EPSP synthase with one of its two substrates (shikimate 3-phosphate) and with the widely used herbicide glyphosate by x-ray crystallography. The two-domain enzyme closes on ligand binding, thereby forming the active site in the interdomain cleft. Glyphosate appears to occupy the binding site of the second substrate of EPSP synthase (phosphoenol pyruvate), mimicking an intermediate state of the ternary enzyme⋅substrates complex. The elucidation of the active site of EPSP synthase and especially of the binding pattern of glyphosate provides a valuable roadmap for engineering new herbicides and herbicide-resistant crops, as well as new antibiotic and antiparasitic drugs.
Resumo:
The cell wall imparts structural strength and shape to bacteria. It is made up of polymeric glycan chains with peptide branches that are cross-linked to form the cell wall. The cross-linking reaction, catalyzed by transpeptidases, is the last step in cell wall biosynthesis. These enzymes are members of the family of penicillin-binding proteins, the targets of β-lactam antibiotics. We report herein the structure of a penicillin-binding protein complexed with a cephalosporin designed to probe the mechanism of the cross-linking reaction catalyzed by transpeptidases. The 1.2-Å resolution x-ray structure of this cephalosporin bound to the active site of the bifunctional serine type d-alanyl-d-alanine carboxypeptidase/transpeptidase (EC 3.4.16.4) from Streptomyces sp. strain R61 reveals how the two peptide strands from the polymeric substrates are sequestered in the active site of a transpeptidase. The structure of this complex provides a snapshot of the enzyme and the bound cell wall components poised for the final and critical cross-linking step of cell wall biosynthesis.
Resumo:
Ribozymes of hepatitis delta virus have been proposed to use an active-site cytosine as an acid-base catalyst in the self-cleavage reaction. In this study, we have examined the role of cytosine in more detail with the antigenomic ribozyme. Evidence that proton transfer in the rate-determining step involved cytosine 76 (C76) was obtained from examining cleavage activity of the wild-type and imidazole buffer-rescued C76-deleted (C76Δ) ribozymes in D2O and H2O. In both reactions, a similar kinetic isotope effect and shift in the apparent pKa indicate that the buffer is functionally substituting for the side chain in proton transfer. Proton inventory of the wild-type reaction supported a mechanism of a single proton transfer at the transition state. This proton transfer step was further characterized by exogenous base rescue of a C76Δ mutant with cytosine and imidazole analogues. For the imidazole analogues that rescued activity, the apparent pKa of the rescue reaction, measured under kcat/KM conditions, correlated with the pKa of the base. From these data a Brønsted coefficient (β) of 0.51 was determined for the base-rescued reaction of C76Δ. This value is consistent with that expected for proton transfer in the transition state. Together, these data provide strong support for a mechanism where an RNA side chain participates directly in general acid or general base catalysis of the wild-type ribozyme to facilitate RNA cleavage.
Resumo:
Unidirectional proton transport in bacteriorhodopsin is enforced by the switching machinery of the active site. Threonine 89 is located in this region, with its O—H group forming a hydrogen bond with Asp-85, the acceptor for proton transfer from the Schiff base of the retinal chromophore. Previous IR spectroscopy of [3-18O]threonine-labeled bacteriorhodopsin showed that the hydrogen bond of the O—D group of Thr-89 in D2O is strengthened in the K photocycle intermediate. Here, we show that the strength and orientation of this hydrogen bond remains unchanged in the L intermediate and through the M intermediate. Furthermore, a strong interaction between Asp-85 and the O—H (O—D) group of Thr-89 in M is indicated by a shift in the C⩵O stretching vibration of the former because of 18O substitution in the latter. Thus, the strong hydrogen bond between Asp-85 and Thr-89 in K persists through M, contrary to structural models based on x-ray crystallography of the photocycle intermediates. We propose that, upon photoisomerization of the chromophore, Thr-89 forms a tight, persistent complex with one of the side-chain oxygens of Asp-85 and is thereby precluded from participating in the switching process. On the other hand, the loss of hydrogen bonding at the other oxygen of Asp-85 in M may be related to the switching event.
Resumo:
The p53 tumor suppressor protein and the MDM2 oncoprotein form a feedback-control loop that up-regulates cellular MDM2 production, blocks p53 activity, and promotes p53 decay. tsg101 was discovered as a gene whose deficiency results in neoplastic transformation of NIH 3T3 cells and the ability to generate metastatic tumors in nude mice. Its protein product contains a domain, Ubc, characteristic of the catalytic domain of ubiquitin conjugase (E2) enzymes but lacking an active-site cysteine crucial for ubiquitin conjugase activity. Here we report that TSG101 participates with MDM2 in an autoregulatory loop that modulates the cellular levels of both proteins, and also of p53, by affecting protein decay. We show that the Ubc domain of TSG101 interferes with ubiquitination of MDM2, that TSG101 inhibits MDM2 decay and elevates its steady-state level, and that these events are associated with down-regulation of p53 protein. Conversely, pulse–chase and Western blot experiments in wild-type and mutant fibroblasts indicate that elevation of MDM2 by overexpression of wild-type p53, by amplification of the endogenous MDM2 gene, or by transfection of MDM2-expressing constructs promotes TSG101 loss, which we show occurs by 26S proteasome-dependent decay. Our results identify TSG101 as both a regulator of, and target of, MDM2/p53 circuitry.
Resumo:
DNMT2 is a human protein that displays strong sequence similarities to DNA (cytosine-5)-methyltransferases (m5C MTases) of both prokaryotes and eukaryotes. DNMT2 contains all 10 sequence motifs that are conserved among m5C MTases, including the consensus S-adenosyl-l-methionine-binding motifs and the active site ProCys dipeptide. DNMT2 has close homologs in plants, insects and Schizosaccharomyces pombe, but no related sequence can be found in the genomes of Saccharomyces cerevisiae or Caenorhabditis elegans. The crystal structure of a deletion mutant of DNMT2 complexed with S-adenosyl-l-homocysteine (AdoHcy) has been determined at 1.8 Å resolution. The structure of the large domain that contains the sequence motifs involved in catalysis is remarkably similar to that of M.HhaI, a confirmed bacterial m5C MTase, and the smaller target recognition domains of DNMT2 and M.HhaI are also closely related in overall structure. The small domain of DNMT2 contains three short helices that are not present in M.HhaI. DNMT2 binds AdoHcy in the same conformation as confirmed m5C MTases and, while DNMT2 shares all sequence and structural features with m5C MTases, it has failed to demonstrate detectable transmethylase activity. We show here that homologs of DNMT2, which are present in some organisms that are not known to methylate their genomes, contain a specific target-recognizing sequence motif including an invariant CysPheThr tripeptide. DNMT2 binds DNA to form a denaturant-resistant complex in vitro. While the biological function of DNMT2 is not yet known, the strong binding to DNA suggests that DNMT2 may mark specific sequences in the genome by binding to DNA through the specific target-recognizing motif.
Resumo:
Group II introns are widely believed to have been ancestors of spliceosomal introns, yet little is known about their own evolutionary history. In order to address the evolution of mobile group II introns, we have compiled 71 open reading frames (ORFs) related to group II intron reverse transcriptases and subjected their derived amino acid sequences to phylogenetic analysis. The phylogenetic tree was rooted with reverse transcriptases (RTs) of non-long terminal repeat retroelements, and the inferred phylogeny reveals two major clusters which we term the mitochondrial and chloroplast-like lineages. Bacterial ORFs are mainly positioned at the bases of the two lineages but with weak bootstrap support. The data give an overview of an apparently high degree of horizontal transfer of group II intron ORFs, mostly among related organisms but also between organelles and bacteria. The Zn domain (nuclease) and YADD motif (RT active site) were lost multiple times during evolution. Differences in domain structures suggest that the oldest ORFs were concise, while the ORF in the mitochondrial lineage subsequently expanded in three locations. The data are consistent with a bacterial origin for mobile group II introns.
Resumo:
Binding of different regulatory subunits and methylation of the catalytic (C) subunit carboxy-terminal leucine 309 are two important mechanisms by which protein phosphatase 2A (PP2A) can be regulated. In this study, both genetic and biochemical approaches were used to investigate regulation of regulatory subunit binding by C subunit methylation. Monoclonal antibodies selectively recognizing unmethylated C subunit were used to quantitate the methylation status of wild-type and mutant C subunits. Analysis of 13 C subunit mutants showed that both carboxy-terminal and active site residues are important for maintaining methylation in vivo. Severe impairment of methylation invariably led to a dramatic decrease in Bα subunit binding but not of striatin, SG2NA, or polyomavirus middle tumor antigen (MT) binding. In fact, most unmethylated C subunit mutants showed enhanced binding to striatin and SG2NA. Certain carboxy-terminal mutations decreased Bα subunit binding without greatly affecting methylation, indicating that Bα subunit binding is not required for a high steady-state level of C subunit methylation. Demethylation of PP2A in cell lysates with recombinant PP2A methylesterase greatly decreased the amount of C subunit that could be coimmunoprecipitated via the Bα subunit but not the amount that could be coimmunoprecipitated with Aα subunit or MT. When C subunit methylation levels were greatly reduced in vivo, Bα subunits were found complexed exclusively to methylated C subunits, whereas striatin and SG2NA in the same cells bound both methylated and unmethylated C subunits. Thus, C subunit methylation is critical for assembly of PP2A heterotrimers containing Bα subunit but not for formation of heterotrimers containing MT, striatin, or SG2NA. These findings suggest that methylation may be able to selectively regulate the association of certain regulatory subunits with the A/C heterodimer.
Resumo:
The proteasome is a large protease complex consisting of multiple catalytic subunits that function simultaneously to digest protein substrates. This complexity has made deciphering the role each subunit plays in the generation of specific protein fragments difficult. Positional scanning libraries of peptide vinyl sulfones were generated in which the amino acid located directly at the site of hydrolysis (P1 residue) was held constant and sequences distal to that residue (P2, P3, and P4 positions) were varied across all natural amino acids (except cysteine and methionine). Binding information for each of the individual catalytic subunits was obtained for each library under a variety of different conditions. The resulting specificity profiles indicated that substrate positions distal to P1 are critical for directing substrates to active subunits in the complex. Furthermore, specificity profiles of IFN-γ-regulated subunits closely matched those of their noninducible counterparts, suggesting that subunit swapping may modulate substrate processing by a mechanism that does require a change in the primary sequence specificity of individual catalytic subunits in the complex. Finally, specificity profiles were used to design specific inhibitors of a single active site in the complex. These reagents can be used to further establish the role of each subunit in substrate processing by the proteasome.
Resumo:
Cytochrome P450 14α-sterol demethylases (CYP51) are essential enzymes in sterol biosynthesis in eukaryotes. CYP51 removes the 14α-methyl group from sterol precursors such as lanosterol, obtusifoliol, dihydrolanosterol, and 24(28)-methylene-24,25-dihydrolanosterol. Inhibitors of CYP51 include triazole antifungal agents fluconazole and itraconazole, drugs used in treatment of topical and systemic mycoses. The 2.1- and 2.2-Å crystal structures reported here for 4-phenylimidazole- and fluconazole-bound CYP51 from Mycobacterium tuberculosis (MTCYP51) are the first structures of an authentic P450 drug target. MTCYP51 exhibits the P450 fold with the exception of two striking differences—a bent I helix and an open conformation of BC loop—that define an active site-access channel running along the heme plane perpendicular to the direction observed for the substrate entry in P450BM3. Although a channel analogous to that in P450BM3 is evident also in MTCYP51, it is not open at the surface. The presence of two different channels, with one being open to the surface, suggests the possibility of conformationally regulated substrate-in/product-out openings in CYP51. Mapping mutations identified in Candida albicans azole-resistant isolates indicates that azole resistance in fungi develops in protein regions involved in orchestrating passage of CYP51 through different conformational stages along the catalytic cycle rather than in residues directly contacting fluconazole. These new structures provide a basis for rational design of new, more efficacious antifungal agents as well as insight into the molecular mechanism of P450 catalysis.
Resumo:
The wealth of kinetic and structural information makes inorganic pyrophosphatases (PPases) a good model system to study the details of enzymatic phosphoryl transfer. The enzyme accelerates metal-complexed phosphoryl transfer 1010-fold: but how? Our structures of the yeast PPase product complex at 1.15 Å and fluoride-inhibited complex at 1.9 Å visualize the active site in three different states: substrate-bound, immediate product bound, and relaxed product bound. These span the steps around chemical catalysis and provide strong evidence that a water molecule (Onu) directly attacks PPi with a pKa vastly lowered by coordination to two metal ions and D117. They also suggest that a low-barrier hydrogen bond (LBHB) forms between D117 and Onu, in part because of steric crowding by W100 and N116. Direct visualization of the double bonds on the phosphates appears possible. The flexible side chains at the top of the active site absorb the motion involved in the reaction, which may help accelerate catalysis. Relaxation of the product allows a new nucleophile to be generated and creates symmetry in the elementary catalytic steps on the enzyme. We are thus moving closer to understanding phosphoryl transfer in PPases at the quantum mechanical level. Ultra-high resolution structures can thus tease out overlapping complexes and so are as relevant to discussion of enzyme mechanism as structures produced by time-resolved crystallography.