990 resultados para Action positive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium-rich manganese oxide (Li2MnO3) is prepared by reverse microemulsion method employing Pluronic acid (P123) as a soft template and studied as a positive electrode material. The as-prepared sample possesses good crystalline structure with a broadly distributed mesoporosity but low surface area. As expected, cyclic voltammetry and charge-discharge data indicate poor electrochemical activity. However, the sample gains surface area with narrowly distributed mesoporosity and also electrochemical activity after treating in 4 M H2SO4. A discharge capacity of about 160 mAh g(-1) is obtained. When the acid-treated sample is heated at 300 A degrees C, the resulting porous sample with a large surface area and dual porosity provides a discharge capacity of 240 mAh g(-1). The rate capability study suggests that the sample provides about 150 mAh g(-1) at a specific discharge current of 1.25 A g(-1). Although the cycling stability is poor, the high rate capability is attributed to porous nature of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thyroid hormones are essential for the development and differentiation of all cells of the human body. They regulate protein, fat, and carbohydrate metabolism. In this Account, we discuss the synthesis, structure, and mechanism of action of thyroid hormones and their analogues. The prohormone thyroxine (14) is synthesized on thyroglobulin by thyroid peroxidase (TPO), a heme enzyme that uses iodide and hydrogen peroxide to perform iodination and phenolic coupling reactions. The monodeiodination of T4 to 3,3',5-triiodothyronine (13) by selenium-containing deiodinases (ID-1, ID-2) is a key step in the activation of thyroid hormones. The type 3 deiodinase (ID-3) catalyzes the deactivation of thyroid hormone in a process that removes iodine selectively from the tyrosyl ring of T4 to produce 3,3',5'-triiodothyronine (rT3). Several physiological and pathological stimuli influence thyroid hormone synthesis. The overproduction of thyroid hormones leads to hyperthyroidism, which is treated by antithyroid drugs that either inhibit the thyroid hormone biosynthesis and/or decrease the conversion of T4 to T3. Antithyroid drugs are thiourea-based compounds, which indude propylthiouracil (PTU), methimazole (MM I), and carbimazole (CBZ). The thyroid gland actively concentrates these heterocyclic compounds against a concentration gradient Recently, the selenium analogues of PTU, MMI, and CBZ attracted significant attention because the selenium moiety in these compounds has a higher nucleophilicity than that of the sulfur moiety. Researchers have developed new methods for the synthesis of the selenium compounds. Several experimental and theoretical investigations revealed that the selone (C=Se) in the selenium analogues is more polarized than the thione (C=S) in the sulfur compounds, and the selones exist predominantly in their zwitterionic forms. Although the thionamide-based antithyroid drugs have been used for almost 70 years, the mechanism of their action is not completely understood. Most investigations have revealed that MMI and PTU irreversibly inhibit TPO. PTU, MTU, and their selenium analogues also inhibit ID-1, most likely by reacting with the selenenyl iodide intermediate. The good ID-1 inhibitory activity of Pill and its analogues can be ascribed to the presence of the -N(H)-C(=O)- functionality that can form hydrogen bonds with nearby amino add residues in the selenenyl sulfide state. In addition to the TPO and ID-1 inhibition, the selenium analogues are very good antioxidants. In the presence of cellular reducing agents such as GSH, these compounds catalytically reduce hydrogen peroxide. They can also efficiently scavenge peroxynitrite, a potent biological oxidant and nitrating agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dispersion state of multiwall carbon nanotubes (MWNTs) in melt mixed polyethylene/polyethylene oxide (PE/PEO) blends has been assessed by both surface and volume electrical conductivity measurements and the structural relaxations have been assessed by broadband dielectric spectroscopy. The selective localization of MWNTs in the blends was controlled by the flow characteristics of the components, which led to their localization in the energetically less favored phase (PE). The electrical conductivity and positive temperature co-efficient (PTC) measurements were carried out on hot pressed samples. The neat blends exhibited only a negative temperature coefficient (NTC) effect while the blends with MWNTs exhibited both a PTC and a NTC at the melting temperatures of PE and PEO respectively. These phenomenal changes were corroborated with the different crystalline morphology in the blends. It was deduced that during compression molding, the more viscous PEO phase spreads less in contrast to the less viscous PE phase. This has further resulted in a gradient in morphology as well as the distribution state of the MWNTs in the samples and was supported by scanning electron and scanning acoustic microscopy (SAM) studies and contact angle measurements. SAM from different depths of the samples revealed a gradient in the microstructure in the PE/PEO blends which is contingent upon the flow characteristics of the components. Interestingly, the surface and volume electrical conductivity was different due to the different dispersion state of the MWNTs at the surface and bulk. The observed surface and volume electrical conductivity measurements were corroborated with the evolved morphology during processing. The structural relaxations in both PE and PEO were discerned from broadband dielectric spectroscopy. The segmental dynamics below and above the melting temperature of PEO were significantly different in the presence of MWNTs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth of multicellular organisms depends on maintenance of proper balance between proliferation and differentiation. Any disturbance in this balance in animal cells can lead to cancer. Experimental evidence is provided to conclude with special reference to the action of follicle-stimulating hormone (FSH) on Sertoli cells, and luteinizing hormone (LH) on Leydig cells that these hormones exert a differential action on their target cells, i.e., stimulate proliferation when the cells are in an undifferentiated state which is the situation with cancer cells and promote only functional parameters when the cell are fully differentiated. Hormones and growth factors play a key role in cell proliferation, differentiation, and apoptosis. There is a growing body of evidence that various tumors express some hormones at high levels as well as their cognate receptors indicating the possibility of a role in progression of cancer. Hormones such as LH, FSH, and thyroid-stimulating hormone have been reported to stimulate cell proliferation and act as tumor promoter in a variety of hormone-dependent cancers including gonads, lung, thyroid, uterus, breast, prostate, etc. This review summarizes evidence to conclude that these hormones are produced by some cancer tissues to promote their own growth. Also an attempt is made to explain the significance of the differential action of hormones in progression of cancer with special reference to prostate cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our pursuit to develop new potential anticancer leads, we designed a combination of structural units of indole and substituted triazole; and a library of 1-{1-methyl-2-4-phenyl-5-(propan-2-ylsulfanyl)-4H-1,2,4-triazol-3-yl ]-1H-indol-3-yl}methanamine derivatives was synthesized and characterized. Cytotoxic evaluations of these molecules over a panel of three human cancer cell lines were carried out. Few molecules exhibited potent growth inhibitory action against the treated cancer cell lines at lower micro molar concentration. An in vitro assay investigation of these active compounds using recombinant human SIRT1 enzyme showed that one of the compounds (IT-14) inhibited the deacetylation activity of the enzyme. The in vivo study of IT-14 exemplified its promising action by reducing the prostate weight to the body weight ratio in prostate hyperplasia animal models. A remarkable decrease in the disruption of histoarchitecture of the prostate tissues isolated from IT-14 treated animal compared to that of the positive control was observed. The molecular interactions with SIRT1 enzyme were also supported by molecular docking simulations. Hence this compound can act as a lead molecule to treat prostatic hyperplasia. (C) 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A porous layered composite of Li2MnO3 and LiMn1/3Co1/3Ni1/3O2 (composition: Li1.2Mn0.53Ni0.13Co0.13O2) is prepared by reverse microemulsion method employing a soft polymer template and studied as a positive electrode material. The precursor is heated at several temperatures between 500 and 900 degrees C. The product samples possess mesoporosity with broadly distributed pores of about 30 nm diameters. There is a decrease in pore volume as well as in surface area by increasing the temperature of preparation. Nevertheless, the electrochemical activity of the composite increases with an increase in temperature. The discharge capacity values of the samples prepared at 800 and 900 degrees C are about 250 mAh g(-1) at a specific current of 40 mA g(-1) with an excellent cycling stability. A value of 225 mAh g(-1) is obtained at the end of 30 charge-discharge cycles. Both these composite samples possess high rate capability, but the 800 degrees C sample is marginally superior to the 900 degrees C sample. A discharge capacity of 100 mAh g(-1) is obtained at a specific current of 1000 mA g(-1). The high rate capability is attributed to porous nature of the composite samples. (C) 2013 The Electrochemical Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses a novel high-speed approach for human action recognition in H. 264/AVC compressed domain. The proposed algorithm utilizes cues from quantization parameters and motion vectors extracted from the compressed video sequence for feature extraction and further classification using Support Vector Machines (SVM). The ultimate goal of our work is to portray a much faster algorithm than pixel domain counterparts, with comparable accuracy, utilizing only the sparse information from compressed video. Partial decoding rules out the complexity of full decoding, and minimizes computational load and memory usage, which can effect in reduced hardware utilization and fast recognition results. The proposed approach can handle illumination changes, scale, and appearance variations, and is robust in outdoor as well as indoor testing scenarios. We have tested our method on two benchmark action datasets and achieved more than 85% accuracy. The proposed algorithm classifies actions with speed (>2000 fps) approximately 100 times more than existing state-of-the-art pixel-domain algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information is encoded in neural circuits using both graded and action potentials, converting between them within single neurons and successive processing layers. This conversion is accompanied by information loss and a drop in energy efficiency. We investigate the biophysical causes of this loss of information and efficiency by comparing spiking neuron models, containing stochastic voltage-gated Na+ and K+ channels, with generator potential and graded potential models lacking voltage-gated Na+ channels. We identify three causes of information loss in the generator potential that are the by-product of action potential generation: (1) the voltage-gated Na+ channels necessary for action potential generation increase intrinsic noise and (2) introduce non-linearities, and (3) the finite duration of the action potential creates a `footprint' in the generator potential that obscures incoming signals. These three processes reduce information rates by similar to 50% in generator potentials, to similar to 3 times that of spike trains. Both generator potentials and graded potentials consume almost an order of magnitude less energy per second than spike trains. Because of the lower information rates of generator potentials they are substantially less energy efficient than graded potentials. However, both are an order of magnitude more efficient than spike trains due to the higher energy costs and low information content of spikes, emphasizing that there is a two-fold cost of converting analogue to digital; information loss and cost inflation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subiculum is a structure that forms a bridge between the hippocampus and the entorhinal cortex (EC), and plays a major role in the memory consolidation process. Here, we demonstrate spike-timing-dependent plasticity (STDP) at the proximal excitatory inputs on the subicular pyramidal neurons of juvenile rat. Causal (positive) pairing of a single EPSP with a single back-propagating action potential (bAP) after a time interval of 10 ms (+10 ms) failed to induce plasticity. However, increasing the number of bAPs in a burst to three, at two different frequencies of 50 Hz (bAP burst) and 150 Hz, induced long-term depression (LTD) after a time interval of +10 ms in both the regular-firing (RF), and the weak burst firing (WBF) neurons. The LTD amplitude decreased with increasing time interval between the EPSP and the bAP burst. Reversing the order of the pairing of the EPSP and the bAP burst induced LTP at a time interval of -10 ms. This finding is in contrast with reports at other synapses, wherein prebefore postsynaptic (causal) pairing induced LTP and vice versa. Our results reaffirm the earlier observations that the relative timing of the pre- and postsynaptic activities can lead to multiple types of plasticity profiles. The induction of timing-dependent LTD (t-LTD) was dependent on postsynaptic calcium change via NMDA receptors in the WBF neurons, while it was independent of postsynaptic calcium change, but required active L-type calcium channels in the RF neurons. Thus the mechanism of synaptic plasticity may vary within a hippocampal subfield depending on the postsynaptic neuron involved. This study also reports a novel mechanism of LTD induction, where L-type calcium channels are involved in a presynaptically induced synaptic plasticity. The findings may have strong implications in the memory consolidation process owing to the central role of the subiculum and LTD in this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-permeable small molecules that enhance the stability of the G-quadruplex (G4) DNA structures are currently among the most intensively pursued ligands for inhibition of the telomerase activity. Herein we report the design and syntheses of four novel benzimidazole carbazole conjugates and demonstrate their high binding affinity to G4 DNA. Si nuclease assay confirmed the ligand mediated G-quadruplex DNA protection. Additional evidence from Telomeric Repeat Amplification Protocol (TRAP-LIG) assay demonstrated efficient telomerase inhibition activity by the ligands. Two of the ligands showed IC50 values in the sub-micromolar range in the TRAP-LIG assay, which are the best among the benzimidazole derivatives reported so far. The ligands also exhibited cancer cell selective nuclear internalization, nuclear condensation, fragmentation, and eventually antiproliferative activity in long-term cell viability assays. Annexin V-FITC/PI staining assays confirm that the cell death induced by the ligands follows an apoptotic pathway. An insight into the mode of ligand binding was obtained from the molecular dynamics simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytotoxic activity of a new series of 2-(4'-chlorobenzyl)-5,6-disubstituted imidazo2,1-b]1,3,4]wthiadiazoles against different human and murine cancer cell lines is reported. Among the tested compounds, two derivatives namely 2-(4-chlorobenzyl)-6-(2-oxo-2H-chromen-3-yl)imidazo2,1-1)]1,3,4]th iadiazole-5-carbaldehyde 4i and 2-(4-chlorobenzyl)-6-(2-oxo-2H-chromen-3-ypimidazo2,1-1)]1,3,4]thi adiazol-5-yl thiocyanate 5i emerged as the most potent against all the cell lines. To investigate the mechanism of action, we selected compounds 4i for cell cycle study, analysis of mitochondrial membrane potential and Annexin V-FITC flow cytometric analysis and DNA fragmentation assay. Results showed that 4i induced cytotoxicity by inducing apoptosis without arresting the cell cycle. (C) 2014 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A porous layered composite of Li2MnO3 and LiMn0.35Ni0.55Fe0.1O2 (composition:Li1.2Mn0.54Ni0.22Fe0.04O2) is prepared by inverse microemulsion method and studied as a positive electrode material. The precursor is heated at several temperatures between 500 and 900 degrees C. The X-ray diffraction, scanning electron microscopy, and transmission electron microscopy studies suggested that well crystalline submicronsized particles are obtained. The product samples possess mesoporosity with broadly distributed pores around 10 similar to 50 nm diameter. Pore volume and surface area decrease by increasing the temperature of preparation. However, the electrochemical activity of the composite samples increases with an increase in temperature. The discharge capacity values of the samples prepared at 900 degrees C are about 186 mAh g(-1) at a specific current of 25 mA g(-1) with an excellent cycling stability. The composite sample also possesses high rate capability. The high rate capability is attributed to the porous nature of the material. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead-carbon hybrid ultracapacitors comprise positive lead dioxide plates of the lead-acid battery and negative plates of carbon-based electrical double-layer capacitors (EDLCs). Accordingly, a lead-carbon hybrid ultracapacitor has the features of both the battery and that of an EDLC. In this study, the development and performance comparison between the two types of lead-carbon hybrid ultracapacitors, namely those with substrate-integrated and conventional pasted positive plates, is presented as such a study is lacking in the literature. The study suggests that the faradaic efficiencies for both types of lead-carbon hybrid ultracapacitors are comparable. However, their capacitance values as well as energy and power densities differ significantly. For substrate-integrated positive plate hybrid ultracapacitor, capacitance and energy density values are lower, but power density values are higher than pasted positive plate lead-carbon hybrid ultracapacitors due to their shorter response time. Accordingly, internal resistance values are also lower for substrate-integrated lead-carbon hybrid ultracapacitors. Both types of lead-carbon hybrid ultracapacitors exhibit good cycle life of 100,000 pulse charge-discharge cycles with only a nominal loss in their capacitance values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We perform numerical experiments to study the shear dynamo problem where we look for the growth of a large-scale magnetic field due to non-helical stirring at small scales in a background linear shear flow in previously unexplored parameter regimes. We demonstrate the large-scale dynamo action in the limit where the fluid Reynolds number (Re) is below unity while the magnetic Reynolds number (Rm) is above unity; the exponential growth rate scales linearly with shear, which is consistent with earlier numerical works. The limit of low Re is particularly interesting, as seeing the dynamo action in this limit would provide enough motivation for further theoretical investigations, which may focus attention on this analytically more tractable limit of Re < 1 compared to the more formidable limit of Re > 1. We also perform simulations in the regimes where (i) both (Re, Rm) < 1, and (ii) Re > 1 and Rm < 1, and compute all of the components of the turbulent transport coefficients (alpha(ij) and alpha(ij)) using the test-field method. A reasonably good agreement is observed between our results and the results of earlier analytical works in similar parameter regimes.