903 resultados para Acetyl coenzyme A carboxylase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carnitine (Car) buffers excess acetyl-CoA through the formation of acetylCar (AcCar). AcCar's acetyl group (AG-AcCar) gives rise to a peak at 2.13 ppm in ¹H MR spectra of skeletal muscle, whereas the trimethylammonium (TMA) groups of both, AcCar and Car, are thought to contribute to the TMA peak at 3.23 ppm. Surprisingly, in previous studies both resonances, AG-AcCar and TMA, increased after exercise. The aim of this study was to assess if the exercise-related TMA increase correlated with AcCar production. Magnetic resonance spectroscopic imaging (pulse repetition time/echo time = 1200/35 ms) was performed before and after prolonged exercise in the lower leg and thigh of eight runners and eight cyclists, respectively. TMA and AG-AcCar increased after exercise (P < 0.001). TMA's increase correlated with the AG-AcCar increase (R² = 0.73, P < 0.001, lower leg; R² = 0.28, P < 0.001, thigh). The correlation of ΔTMA with ΔAG-AcCar suggests that the TMA increase is due to AcCar formation. As total Car (Car + AcCar) remains unchanged with exercise, these findings suggest that the contribution of free Car to the TMA peak is limited and, therefore, is partly invisible in muscle ¹H MR spectra. This indicates that the biochemically relevant cytosolic content of free Car is considerably lower than the overall concentration determined by radioisotopic assays, a potentially important result with respect to regulation of substrate oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary aim was to investigate the effect of combined butafosfan and cyanocobalamin on liver metabolism in early lactating cows through mRNA expression measurements of genes encoding 31 enzymes and transport proteins of major metabolic processes in the liver using 16 multiparous early lactating dairy cows. The treatments included i.v. injection of 10 mL/100 kg of body weight combined butafosfan and cyanocobalamin (TG, n = 8) on 3 d consecutively at 25 +/- 3 d in milk or injection with physiological saline solution similarly applied (CG, n = 8). Results include a higher daily milk production for TG cows (41.1 +/- 0.9 kg, mean +/- SEM) compared with CG cows (39.5 +/- 0.7 kg). In plasma, the concentration of inorganic phosphorus was lower in the TG cows (1.25 +/- 0.08 mmol/L) after the treatment than in the CG cows (1.33 +/- 0.07 mmol/L). The plasma beta-hydroxybutyrate concentration was 0.65 +/- 0.13 mmol/L for all cows before the treatment, and remained unaffected post treatment. The unique result was that in the liver, the mRNA abundance of acyl-coenzyme A synthetase long-chain family member 1, involved in fatty acid oxidation and biosynthesis, was lower across time points after the treatment for TG compared with CG cows (17.5 +/- 0.15 versus 18.1 +/- 0.24 cycle threshold, log(2), respectively). In conclusion, certain effects of combined butafosfan and cyanocobalamin were observed on mRNA abundance of a gene in the liver of nonketotic early lactating cows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose disposability is often impaired in neonatal calves and even more in preterm calves. The objective of this study was to investigate ontogenic maturation of endogenous glucose production (eGP) in calves and its effects on postnatal glucose homeostasis. Calves (n = 7 per group) were born preterm (PT; delivered by section 9 d before term) or at term (T; spontaneous vaginal delivery), or spontaneously born and fed colostrum for 4 d (TC). Blood samples were taken immediately after birth and before and 2h after feeding at 24h after birth (PT; T) or on d 4 of life (TC) to determine metabolic and endocrine changes. After birth (PT and T) or on d 3 of life (TC), fasted calves were gavaged with deuterium-labeled water to determine gluconeogenesis (GNG) and intravenously infused with [U(13)C]-glucose to measure eGP and glucose oxidation (GOx) in blood plasma. After slaughter at 26h after birth (PT, T) or on d 4 of life (TC), glycogen concentrations in liver and hepatic mRNA concentrations and enzyme activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase were measured. Preterm calves had the lowest plasma concentrations of cortisol and 3,5,3'-triiodothyronine at birth. Plasma glucose concentrations from d 1 to 2 decreased more, but plasma concentrations of lactate and urea and glucagon:insulin ratio were higher in PT than in T and TC calves. The eGP, GNG, GOx, as well as hepatic glycogen concentrations and PEPCK activities, were lowest in PT calves. Results indicate impaired glucose homeostasis due to decreased eGP in PT calves and maturation of eGP with ontogenic development.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose supply markedly changes during the transition to extrauterine life. In this study, we investigated diet effects on glucose metabolism in neonatal calves. Calves were fed colostrum (C; n = 7) or milk-based formula (F; n = 7) with similar nutrient content up to d 4 of life. Blood plasma samples were taken daily before feeding and 2 h after feeding on d 4 to measure glucose, lactate, nonesterified fatty acids, protein, urea, insulin, glucagon, and cortisol concentrations. On d 2, additional blood samples were taken to measure glucose first-pass uptake (FPU) and turnover by oral [U-(13)C]-glucose and i.v. [6,6-(2)H(2)]-glucose infusion. On d 3, endogenous glucose production and gluconeogenesis were determined by i.v. [U-(13)C]-glucose and oral deuterated water administration after overnight feed deprivation. Liver tissue was obtained 2 h after feeding on d 4 and glycogen concentration and activities and mRNA abundance of gluconeogenic enzymes were measured. Plasma glucose and protein concentrations and hepatic glycogen concentration were higher (P < 0.05), whereas plasma urea, glucagon, and cortisol (d 2) concentrations as well as hepatic pyruvate carboxylase mRNA level and activity were lower (P < 0.05) in group C than in group F. Orally administered [U-(13)C]-glucose in blood was higher (P < 0.05) but FPU tended to be lower (P < 0.1) in group C than in group F. The improved glucose status in group C resulted from enhanced oral glucose absorption. Metabolic and endocrine changes pointed to elevated amino acid degradation in group F, presumably to provide substrates to meet energy requirements and to compensate for impaired oral glucose uptake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dairy cows with high and low plasma non-esterified fatty acid (NEFA) concentrations in early lactation were compared for plasma parameters and mRNA expression of genes in liver and subcutaneous adipose tissue. The study involved 16 multiparous dairy cows with a plasma NEFA concentration of >500 mumol/l [n = 8, high NEFA (HNEFA)] and <140 mumol/l [n = 8, low NEFA (LNEFA)] in the first week post-partum (pp). Blood samples, adipose and liver tissues were collected on day 1 (+1d) and at week 3 pp (+3wk). Blood plasma was assayed for concentrations of metabolites and hormones. Subcutaneous adipose and liver tissues were analysed for mRNA abundance by real-time qRT-PCR encoding parameters related to lipid metabolism. Results showed that mean daily milk yield and milk fat quantity were higher in HNEFA than in LNEFA cows (p < 0.01), and the NEB was more negative in HNEFA than in LNEFA in +3wk too (p < 0.05). HNEFA cows had slightly lower (p < 0.1) insulin concentrations than LNEFA cows across the study period, and the body condition score decreased more from +1d to +3wk in HNEFA than in LNEFA (p = 0.09). The mRNA abundance of genes in the liver related to fatty acid oxidation (carnitine palmitoyltransferase 2 and very long chain acyl-coenzyme A dehydrogenase) and ketogenesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 2) were lower in HNEFA than in LNEFA cows. No differences between the two groups were observed for mRNA expression of genes in adipose tissue. The number of calculated significant correlation coefficients (moderately strong) between parameters in the liver and in adipose tissue was nearly similar on +1d, and higher for HNEFA compared with LNEFA cows in +3wk. In conclusion, dairy cows with high compared with low plasma NEFA concentrations in early lactation show differentially synchronized mRNA expression of genes in adipose tissue and liver in +3wk that suggests a different orchestrated homeorhetic regulation of lipid metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty coagulase-negative Staphylococcus strains displaying alpha-haemolysis (delta-haemolysin) on sheep-blood agar were isolated from the noses of different pigs in Switzerland. The strains were Gram-stain-positive, non-motile cocci, catalase-positive and coagulase-negative. Sequence analysis of the 16S rRNA gene, sodA, rpoB, dnaJ and hsp60 and phylogenetic characteristics revealed that the strains showed the closest relatedness to Staphylococcus microti CCM 4903(T) and Staphylococcus muscae DSM 7068(T). The strains can be differentiated from S. microti by the absence of mannose fermentation and arginine arylamidase and from S. muscae by the absence of beta-glucuronidase activity and production of alkaline phosphatase. The chosen type strain ARI 262(T) shared 20.1 and 31.9 % DNA relatedness with S. microti DSM 22147(T) and S. muscae CCM 4903(T), respectively, by DNA-DNA hybridization. iso-C(15 : 0), anteiso-C(15 : 0) and iso-C(17 : 0) were the most common fatty acids. Cell-wall structure analysis revealed the peptidoglycan type A3alpha l-Lys-Gly(2)-l-Ser-Gly (type A11.3). The presence of teichoic acid was determined by sequencing the N-acetyl-beta-d-mannosaminyltransferase gene tarA, which is involved in biosynthesis of ribitol teichoic acid. Menaquinone 7 (MK-7) was the predominant respiratory quinone. The G+C content of ARI 262(T) was 38.8 mol%. The isolated strains represent a novel species of the genus Staphylococcus, for which we propose the name Staphylococcus rostri sp. nov. The type strain is ARI 262(T) (=DSM 21968(T) =CCUG 57266(T)) and strain ARI 602 (=DSM 21969 =CCUG 57267) is a reference strain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is known that hypertension is associated with endothelial dysfunction and that Angiotensin II (Ang II) is a key player in the pathogenesis of hypertension. We aimed to elucidate whether endothelial dysfunction is a specific feature of Ang II-mediated hypertension or a common finding of hypertension, independently of underlying etiology. We studied endothelial-dependent vasorelaxation in precapillary resistance arterioles and in various large-caliber conductance arteries in wild-type mice with Ang II-dependent hypertension (2-kidney 1-clip (2K1C) model) or Ang II-independent (volume overload) hypertension (1-kidney 1-clip model (1K1C)). Normotensive sham mice were used as controls. Aortic mechanical properties were also evaluated. Intravital microscopy of precapillary arterioles revealed a significantly impaired endothelium-dependent vasorelaxation in 2K1C mice compared with sham mice, as quantified by the ratio of acetylcholine (ACh)-induced over S-nitroso-N-acetyl-D,L-penicillamine (SNAP)-induced vasorelaxation (2K1C: 0.49±0.12 vs. sham: 0.87±0.11, P=0.018). In contrast, the ACh/SNAP ratio in volume-overload hypertension 1K1C mice was not significantly different from sham mice, indicating no specific endothelial dysfunction (1K1C: 0.77±0.27 vs. sham: 0.87±0.11, P=0.138). Mechanical aortic wall properties and endothelium-dependent vasorelaxation, assessed ex vivo in rings of large-caliber conductance (abdominal and thoracic aorta, carotid and femoral arteries), were not different between 2K1C, 1K1C and sham mice. Endothelial dysfunction is an early feature of Ang II- but not volume-overload-mediated hypertension. This occurs exclusively at the level of precapillary arterioles and not in conduit arteries. Our findings, if confirmed in clinical studies, will provide a better understanding of the pathophysiological mechanisms of hypertension.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The histidine triad nucleotide-binding (Hint2) protein is a mitochondrial adenosine phosphoramidase expressed in liver and pancreas. Its physiological function is unknown. To elucidate the role of Hint2 in liver physiology, the Hint2 gene was deleted. Hint2(-/-) and Hint2(+/+) mice were generated in a mixed C57Bl6/J x 129Sv background. At 20 weeks, the phenotypic changes in Hint2(-/-) relative to Hint2(+/+) mice were an accumulation of hepatic triglycerides, decreased tolerance to glucose, a defective counter-regulatory response to insulin-provoked hypoglycaemia, an increase in plasma interprandial insulin but a decrease in glucose stimulated insulin secretion and defective thermoregulation upon fasting. Leptin mRNA in adipose tissue and plasma leptin were elevated. In mitochondria from Hint2(-/-) hepatocytes, state 3 respiration was decreased, a finding confirmed in HepG2 cells where HINT2 mRNA was silenced. The linked complex II to III electron transfer was decreased in Hint2(-/-) mitochondria, which was accompanied by a lower content of coenzyme Q. HIF-2α expression and the generation of reactive oxygen species were increased. Electron microscopy of mitochondria in Hint2(-/-) mice aged 12 months revealed clustered, fused organelles. The hepatic activities of 3-hydroxyacyl-CoA dehydrogenase short chain and glutamate dehydrogenase (GDH) were decreased by 68% and 60%, respectively, without a change in protein expression. GDH activity was similarly decreased in HINT2-silenced HepG2 cells. When measured in the presence of purified sirtuin 3, latent GDH activity was recovered (126% in Hint2(-/-) vs. 83% in Hint2(+/+) ). This suggests a greater extent of acetylation in Hint2(-/-) than in Hint2(+/+) . Conlusions: Hint2 positively regulates mitochondrial lipid metabolism and respiration, and glucose homeostasis. The absence of Hint2 provokes mitochondrial deformities and a change in the pattern of acetylation of selected proteins. (HEPATOLOGY 2012.).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two F(2) Charolais x German Holstein families comprising full and half sibs share identical but reciprocal paternal and maternal Charolais grandfathers differ in milk production. We hypothesized that differences in milk production were related to differences in nutritional partitioning revealed by glucose metabolism and carcass composition. In 18F(2) cows originating from mating Charolais bulls to German Holstein cows and a following intercross of the F(1) individuals (n=9 each for family Ab and Ba; capital letters indicate the paternal and lowercase letter the maternal grandsire), glucose tolerance tests were performed at 10 d before calving and 30 and 93 d in milk (DIM) during second lactation. Glucose half-time as well as areas under the concentration curve for plasma glucose and insulin were calculated. At 94 DIM cows were infused intravenously with 18.3 micromol of d-[U-(13)C(6)]glucose/kg(0.75) of BW, and blood samples were taken to measure rate of glucose appearance and glucose oxidation as well as plasma concentrations of metabolites and hormones. Cows were slaughtered at 100 DIM and carcass size and composition was evaluated. Liver samples were taken to measure glycogen and fat content, gene expression levels, and enzyme activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and glucose 6-phosphatase as well as gene expression of glucose transporter 2. Milk yield was higher and milk protein content at 30 DIM was lower in Ba than in Ab cows. Glucose half-life was higher but insulin secretion after glucose challenge was lower in Ba than in Ab cows. Cows of Ab showed higher glucose oxidation, and plasma concentrations at 94 DIM were lower for glucose and insulin, whereas beta-hydroxybutyrate was higher in Ba cows. Hepatic gene expression of pyruvate carboxylase, glucose 6-phosphatase, and glucose transporter 2 were higher whereas phosphoenolpyruvate carboxykinase activities were lower in Ba than in Ab cows. Carcass weight as well as fat content of the carcass were higher in Ab than in Ba cows, whereas mammary gland mass was lower in Ab than in Ba cows. Fat classification indicated leaner carcass composition in Ba than in Ab cows. In conclusion, the 2 families showed remarkable differences in milk production that were accompanied by changes in glucose metabolism and body composition, indicating capacity for milk production as main metabolic driving force. Sex chromosomal effects provide an important regulatory mechanism for milk performance and nutrient partitioning that requires further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liver tissue was collected from eight random dairy cows at a slaughterhouse to test if gene expression of pyruvate carboxylase (PC), mitochondrial phosphoenolpyruvate carboxykinase (PEPCKm) and cytosolic phosphoenolpyruvate carboxykinase (PEPCKc) is different at different locations in the liver. Obtained liver samples were analysed for mRNA expression levels of PC, PEPCKc and PEPCKm and subjected to the MIXED procedure of SAS to test for the sampled locations with cow liver as repeated subject. Additionally, the general linear model procedure (GLM) for analysis of variance was applied to test for significant differences for mRNA abundance of PEPCKm, PEPCKc and bPC between the livers. In conclusion, this study demonstrated that mRNA abundance of PC, PEPCKc and PEPCKm is not different between locations in the liver but may differ between individual cows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of psychiatric and neurological disorders and in the mechanisms of antidepressant pharmacotherapy. Psychiatric and neurological conditions have also been associated with reduced brain levels of N-acetyl-aspartate (NAA), which has been used as a putative marker of neural integrity. However, few studies have explored the relationship between BDNF polymorphisms and NAA levels directly. Here, we present data from a single-voxel proton magnetic resonance spectroscopy study of 64 individuals and explore the relationship between BDNF polymorphisms and prefrontal NAA level. Our results indicate an association between a single nucleotide polymorphism (SNP) within BDNF, known as rs1519480, and reduced NAA level (p = 0.023). NAA levels were further predicted by age and Asian ancestry. There was a significant rs1519480 × age interaction on NAA level (p = 0.031). Specifically, the effect of rs1519480 on NAA level became significant at age ⩾34.17 yr. NAA level decreased with advancing age for genotype TT (p = 0.001) but not for genotype CT (p = 0.82) or CC (p = 0.34). Additional in silico analysis of 142 post-mortem brain samples revealed an association between the same SNP and reduced BDNF mRNA expression in the prefrontal cortex. The rs1519480 SNP influences BDNF mRNA expression and has an impact on prefrontal NAA level over time. This genetic mechanism may contribute to inter-individual variation in cognitive performance seen during normal ageing, as well as contributing to the risk for developing psychiatric and neurological conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lorazepam (LOR) is a 3-hydroxy-1,4-benzodiazepine that is chiral and undergoes enantiomerization at room temperature. In humans, about 75% of the administered dose of LOR is excreted in the urine as its 30-glucuronide. CE-MS with negative ESI was used to confirm the presence of LOR-30-glucuronide in urines that stemmed from a healthy individual who ingested 1 or 2 mg LOR, whereas free LOR could be detected in extracts prepared from enzymatically hydrolyzed urines. As the 30-glucuronidation reaction occurs at the chiral center of the molecule, two diastereoisomers can theoretically be formed, molecules that can no longer interconvert. The stereoselective formation of LOR glucuronides in humans and in vitro was investigated. MEKC analysis of extracts of the nonhydrolyzed urines suggested the presence of the two different LOR glucuronides in the urine. The formation of the same two diastereoisomers was also observed in vitro employing incubations of LOR with human liver microsomes in the presence of uridine 5'-diphospho-glucuronic acid as coenzyme. The absence of other coenzymes excluded the formation of phase I or other phase II metabolites of LOR. Both results revealed a stereoselectivity, one diastereoisomer being formed in a higher amount than the other. After enzymatic hydrolysis using beta-glucuronidase, these peaks could not be detected any more. Instead, LOR was monitored. Analysis of the extracts prepared from enzymatically hydrolyzed urines by MEKC in the presence of 2-hydroxypropyl-beta-CD revealed the enantiomerization process of LOR (observation of two peaks of equal magnitude connected with a plateau zone). The data presented provide for the first time the evidence of the stereoselectivity of the LOR glucuronidation in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exogenous melatonin is widely used for sleep disorders and has potential value in neuroprotection, cardioprotection and as an antioxidant. Here, a novel method is described for the determination of melatonin and six metabolites in mouse urine by use of LC-MS/MS and GC-MS. LC-MS/MS is used for the measurement of melatonin, N1-acetyl-5-methoxykynuramine (AMK), N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and 6-hydroxymelatonin (6-HMEL), while GC/MS is used for the determination of N-[2-(5-methoxy-2-oxo-2,3-dihydro-1H-indol-3-yl)-ethyl]-acetamide (2-OMEL) and cyclic 3-hydroxymelatonin (3-HMEL) with detection limits on column of 0.02-0.5 pmol, depending on the metabolite. Following oral administration of melatonin to mice, a 0-24 hr urine collection revealed the presence of melatonin (0.2% dose), 6-HMEL (37.1%) and NAS (3.1%) comprising >90% of the total metabolites; AMK and AFMK were also detected at 0.01% each; 2-OMEL was found at 2.2% of the dose, which is >100 times more than the AMK/AFMK pathway, and comprises >5% of the melatonin-related material detected in mouse urine. 3-HMEL was largely found as a sulfate conjugate. These studies establish sensitive assays for determination of six melatonin metabolites in mouse urine and confirm the potential for antioxidant activity of melatonin through the identification in vivo of AMK and AFMK, ring-opened metabolites with a high capacity for scavenging reactive oxygen species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colostrum feeding and glucocorticoid administration affect glucose metabolism and insulin release in calves. We have tested the hypothesis that dexamethasone as well as colostrum feeding influence insulin-dependent glucose metabolism in neonatal calves using the euglycemic-hyperinsulinemic clamp technique. Newborn calves were fed either colostrum or a milk-based formula (n=14 per group) and in each feeding group, half of the calves were treated with dexamethasone (30 microg/[kg body weight per day]). Preprandial blood samples were taken on days 1, 2, and 4. On day 5, insulin was infused for 3h and plasma glucose concentrations were kept at 5 mmol/L+/-10%. Clamps were combined with [(13)C]-bicarbonate and [6,6-(2)H]-glucose infusions for 5.5h (i.e., from -150 to 180 min, relative to insulin infusion) to determine glucose turnover, glucose appearance rate (Ra), endogenous glucose production (eGP), and gluconeogenesis before and at the end of the clamp. After the clamp liver biopsies were taken to measure mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase (PC). Dexamethasone increased plasma glucose, insulin, and glucagon concentrations in the pre-clamp period thus necessitating a reduction in the rate of glucose infusion to maintain euglycemia during the clamp. Glucose turnover and Ra increased during the clamp and were lower at the end of the clamp in dexamethasone-treated calves. Dexamethasone treatment did not affect basal gluconeogenesis or eGP. At the end of the clamp, dexamethasone reduced eGP and PC mRNA levels, whereas mitochondrial PEPCK mRNA levels increased. In conclusion, insulin increased glucose turnover and dexamethasone impaired insulin-dependent glucose metabolism, and this was independent of different feeding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acidic or EDTA-containing oral hygiene products and acidic medicines have the potential to soften dental hard tissues. The low pH of oral care products increases the chemical stability of some fluoride compounds, favors the incorporation of fluoride ions in the lattice of hydroxyapatite and the precipitation of calcium fluoride on the tooth surface. This layer has some protective effect against an erosive attack. However, when the pH is too low or when no fluoride is present these protecting effects are replaced by direct softening of the tooth surface. Xerostomia or oral dryness can occur as a consequence of medication such as tranquilizers, anti-histamines, anti-emetics and anti-parkinsonian medicaments or of salivary gland dysfunction e.g. due to radiotherapy of the oral cavity and the head and neck region. Above all, these patients should be aware of the potential demineralization effects of oral hygiene products with low pH and high titratable acids. Acetyl salicylic acid taken regularly in the form of multiple chewable tablets or in the form of headache powder as well chewing hydrochloric acids tablets for treatment of stomach disorders can cause erosion. There is most probably no direct association between asthmatic drugs and erosion on the population level. Consumers, patients and health professionals should be aware of the potential of tooth damage not only by oral hygiene products and salivary substitutes but also by chewable and effervescent tablets. Additionally, it can be assumed that patients suffering from xerostomia should be aware of the potential effects of oral hygiene products with low pH and high titratable acids.