999 resultados para Accumulation rate, standard deviation
Resumo:
Considering the important role of N2 fixation for primary productivity and CO2 sequestration, it is crucial to assess the response of diazotrophs to ocean acidification. Previous studies on the genus Trichodesmium suggested a strong sensitivity towards ocean acidification. In view of the large functional diversity in N2 fixers, the objective of this study was to improve our knowledge of the CO2 responses of other diazotrophs. To this end, the single-celled Cyanothece sp. and two heterocystous species, Nodularia spumigena and the symbiotic Calothrix rhizosoleniae, were acclimated to two pCO2 levels (380 vs. 980 µatm). Growth rates, cellular composition (carbon, nitrogen and chlorophyll a) as well as carbon and N2 fixation rates (14C incorporation, acetylene reduction) were measured and compared to literature data on different N2 fixers. The three species investigated in this study responded differently to elevated pCO2, showing enhanced, decreased as well as unaltered growth and production rates. For instance, Cyanothece increased production rates with pCO2, which is in line with the general view that N2 fixers benefit from ocean acidification. Due to lowered growth and production of Nodularia, nitrogen input to the Baltic Sea might decrease in the future. In Calothrix, no significant changes in growth or production could be observed, even though N2 fixation was stimulated under elevated pCO2. Reviewing literature data confirmed a large variability in CO2 sensitivity across diazotrophs. The contrasting response patterns in our and previous studies were discussed with regard to the carbonate chemistry in the respective natural habitats, the mode of N2 fixation as well as differences in cellular energy limitation between the species. The group-specific CO2 sensitivities will impact differently on future biogeochemical cycles of open-ocean environments and systems like the Baltic Sea and should therefore be considered in models estimating climate feedback effects.
Resumo:
To predict effects of climate change and possible feedbacks, it is crucial to understand the mechanisms behind CO2 responses of biogeochemically relevant phytoplankton species. Previous experiments on the abundant N2 fixers Trichodesmium demonstrated strong CO2 responses, which were attributed to an energy reallocation between its carbon (C) and nitrogen (N) acquisition. Pursuing this hypothesis, we manipulated the cellular energy budget by growing Trichodesmium erythraeum IMS101 under different CO2 partial pressure (pCO2) levels (180, 380, 980 and 1400?µatm) and N sources (N2 and NO3-). Subsequently, biomass production and the main energy-generating processes (photosynthesis and respiration) and energy-consuming processes (N2 fixation and C acquisition) were measured. While oxygen fluxes and chlorophyll fluorescence indicated that energy generation and its diurnal cycle was neither affected by pCO2 nor N source, cells differed in production rates and composition. Elevated pCO2 increased N2 fixation and organic C and N contents. The degree of stimulation was higher for nitrogenase activity than for cell contents, indicating a pCO2 effect on the transfer efficiency from N2 to biomass. pCO2-dependent changes in the diurnal cycle of N2 fixation correlated well with C affinities, confirming the interactions between N and C acquisition. Regarding effects of the N source, production rates were enhanced in NO3-grown cells, which we attribute to the higher N retention and lower ATP demand compared with N2 fixation. pCO2 effects on C affinity were less pronounced in NO3- users than N2 fixers. Our study illustrates the necessity to understand energy budgets and fluxes under different environmental conditions for explaining indirect effects of rising pCO2.
Resumo:
Ocean acidification is considered a major threat to marine ecosystems and may particularly affect primary producers. Here we investigated the impact of elevated pCO2 on paralytic shellfish poisoning toxin (PST) content and composition in two strains of Alexandrium tamarense, Alex5 and Alex2. Experiments were carried out as dilute batch to keep carbonate chemistry unaltered over time. We observed only minor changes with respect to growth and elemental composition in response to elevated pCO2. For both strains, the cellular PST content, and in particular the associated cellular toxicity, was lower in the high CO2 treatments. In addition, Alex5 showed a shift in its PST composition from a nonsulfated analogue towards less toxic sulfated analogues with increasing pCO2. Transcriptomic analyses suggest that the ability of A. tamarense to maintain cellular homeostasis is predominantly regulated on the post-translational level rather than on the transcriptomic level. Furthermore, genes associated to secondary metabolite and amino acid metabolism in Alex5 were down-regulated in the high CO2 treatment, which may explain the lower PST content. Elevated pCO2 also induced up-regulation of a putative sulfotransferase sxtN homologue and a substantial down-regulation of several sulfatases. Such changes in sulfur metabolism may explain the shift in PST composition towards more sulfated analogues. All in all, our results indicate that elevated pCO2 will have minor consequences for growth and elemental composition, but may potentially reduce the cellular toxicity of A. tamarense.
Resumo:
It has been proposed that ocean acidification (OA) will interact with other environmental factors to influence the overall impact of global change on biological systems. Accordingly we investigated the influence of nitrogen limitation and OA on the physiology of diatoms by growing the diatom Phaeodactylum tricornutum Bohlin under elevated (1000 µatm; high CO2- HC) or ambient (390 µatm; low CO2-LC) levels of CO2 with replete (110 µmol/L; high nitrate-HN) or reduced (10 ?mol/L; low nitrate-LN) levels of NO3- and subjecting the cells to solar radiation with or without UV irradiance to determine their susceptibility to UV radiation (UVR, 280-400 nm). Our results indicate that OA and UVB induced significantly higher inhibition of both the photosynthetic rate and quantum yield under LN than under HN conditions. UVA or/and UVB increased the cells' non-photochemical quenching (NPQ) regardless of the CO2 levels. Under LN and OA conditions, activity of superoxide dismutase and catalase activities were enhanced, along with the highest sensitivity to UVB and the lowest ratio of repair to damage of PSII. HC-grown cells showed a faster recovery rate of yield under HN but not under LN conditions. We conclude therefore that nutrient limitation makes cells more prone to the deleterious effects of UV radiation and that HC conditions (ocean acidification) exacerbate this effect. The finding that nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance of the diatom P. tricornutum implies that ocean primary production and the marine biological C pump will be affected by OA under multiple stressors.
Resumo:
Seagrass ecosystems are expected to benefit from the global increase in CO2 in the ocean because the photosynthetic rate of these plants may be Ci-limited at the current CO2 level. As well, it is expected that lower external pH will facilitate the nitrate uptake of seagrasses if nitrate is cotransported with H+ across the membrane as in terrestrial plants. Here, we investigate the effects of CO2 enrichment on both carbon and nitrogen metabolism of the seagrass Zostera noltii in a mesocosm experiment where plants were exposed for 5 months to two experimental CO2 concentrations (360 and 700 ppm). Both the maximum photosynthetic rate (Pm) and photosynthetic efficiency (a) were higher (1.3- and 4.1-fold, respectively) in plants exposed to CO2-enriched conditions. On the other hand, no significant effects of CO2 enrichment on leaf growth rates were observed, probably due to nitrogen limitation as revealed by the low nitrogen content of leaves. The leaf ammonium uptake rate and glutamine synthetase activity were not significantly affected by increased CO2 concentrations. On the other hand, the leaf nitrate uptake rate of plants exposed to CO2-enriched conditions was fourfold lower than the uptake of plants exposed to current CO2 level, suggesting that in the seagrass Z. noltii nitrate is not cotransported with H+ as in terrestrial plants. In contrast, the activity of nitrate reductase was threefold higher in plant leaves grown at high-CO2 concentrations. Our results suggest that the global effects of CO2 on seagrass production may be spatially heterogeneous and depend on the specific nitrogen availability of each system. Under a CO2 increase scenario, the natural levels of nutrients will probably become limiting for Z. noltii. This potential limitation becomes more relevant because the expected positive effect of CO2 increase on nitrate uptake rate was not confirmed.
Resumo:
Experimental results related to the effects of ocean acidification on planktonic marine microbes are still rather inconsistent and occasionally contradictory. Moreover, laboratory or field experiments that address the effects of changes in CO2 concentrations on heterotrophic microbes are very scarce, despite the major role of these organisms in the marine carbon cycle. We tested the direct effect of an elevated CO2 concentration (1000 ppmv) on the biomass and metabolic rates (leucine incorporation, CO2 fixation and respiration) of 2 isolates belonging to 2 relevant marine bacterial families, Rhodobacteraceae (strain MED165) and Flavobacteriaceae (strain MED217). Our results demonstrate that, contrary to some expectations, high pCO2 did not negatively affect bacterial growth but increased growth efficiency in the case of MED217. The elevated partial pressure of CO2 (pCO2) caused, in both cases, higher rates of CO2 fixation in the dissolved fraction and, in the case of MED217, lower respiration rates. Both responses would tend to increase the pH of seawater acting as a negative feedback between elevated atmospheric CO2 concentrations and ocean acidification.
Resumo:
Coccolithophores are unicellular phytoplankton that produce calcium carbonate coccoliths as an exoskeleton. Emiliania huxleyi, the most abundant coccolithophore in the world's ocean, plays a major role in the global carbon cycle by regulating the exchange of CO2 across the ocean-atmosphere interface through photosynthesis and calcium carbonate precipitation. As CO2 concentration is rising in the atmosphere, the ocean is acidifying and ammonium (NH4) concentration of future ocean water is expected to rise. The latter is attributed to increasing anthropogenic nitrogen (N) deposition, increasing rates of cyanobacterial N2 fixation due to warmer and more stratified oceans, and decreased rates of nitrification due to ocean acidification. Thus future global climate change will cause oceanic phytoplankton to experience changes in multiple environmental parameters including CO2, pH, temperature and nitrogen source. This study reports on the combined effect of elevated pCO2 and increased NH4 to nitrate (NO3) ratio (NH4/NO3) on E. huxleyi, maintained in continuous cultures for more than 200 generations under two pCO2 levels and two different N sources. Here we show that NH4 assimilation under N-replete conditions depresses calcification at both low and high pCO2, alters coccolith morphology, and increases primary production. We observed that N source and pCO2 synergistically drive growth rates, cell size and the ratio of inorganic to organic carbon. These responses to N source suggest that, compared to increasing CO2 alone, a greater disruption of the organic carbon pump could be expected in response to the combined effect of increased NH4/NO3 ratio and CO2 level in the future acidified ocean. Additional experiments conducted under lower nutrient conditions are needed prior to extrapolating our findings to the global oceans. Nonetheless, our results emphasize the need to assess combined effects of multiple environmental parameters on phytoplankton biology in order to develop accurate predictions of phytoplankton responses to ocean acidification.
Resumo:
Specimens of two species of planktic foraminifera, Globigerinoides ruber and Globigerinella siphonifera, were grown under controlled laboratory conditions at a range of temperatures (18-31 °C), salinities (32-44 psu) and pH levels (7.9-8.4). The shells were examined for their calcium isotope compositions (d44/40Ca) and strontium to calcium ratios (Sr/Ca) using Thermal Ionization Mass Spectrometry and Inductively Coupled Plasma Mass Spectrometry. Although the total variation in d44/40Ca (~0.3 per mill) in the studied species is on the same order as the external reproducibility, the data set reveals some apparent trends that are controlled by more than one environmental parameter. There is a well-defined inverse linear relationship between d44/40Ca and Sr/Ca in all experiments, suggesting similar controls on these proxies in foraminiferal calcite independent of species. Analogous to recent results from inorganically precipitated calcite, we suggest that Ca isotope fractionation and Sr partitioning in planktic foraminifera are mainly controlled by precipitation kinetics. This postulation provides us with a unique tool to calculate precipitation rates and draws support from the observation that Sr/Ca ratios are positively correlated with average growth rates. At 25 °C water temperature, precipitation rates in G. siphonifera and G. ruber are calculated to be on the order of 2000 and 3000 µmol/m**2/h, respectively. The lower d44/40Ca observed at 29 °C in both species is consistent with increased precipitation rates at high water temperatures. Salinity response of d44/40Ca (and Sr/Ca) in G. siphonifera implies that this species has the highest precipitation rates at the salinity of its natural habitat, whereas increasing salinities appear to trigger higher precipitation rates in G. ruber. Isotope effects that cannot be explained by precipitation rate in planktic foraminifera can be explained by a biological control, related to a vacuolar pathway for supply of ions during biomineralization and a pH regulation mechanism in these vacuoles. In case of an additional pathway via cross-membrane transport, supplying light Ca for calcification, the d44/40Ca of the reservoir is constrained as -0.2 per mill relative to seawater. Using a Rayleigh distillation model, we calculate that calcification occurs in a semi-open system, where less than half of the Ca supplied by vacuolization is utilized for calcite precipitation. Our findings are relevant for interpreting paleo-proxy data on d44/40Ca and Sr/Ca in foraminifera as well as understanding their biomineralization processes.
Resumo:
We investigated carbon acquisition by the N2-fixing cyanobacterium Trichodesmium IMS101 in response to CO2 levels of 15.1, 37.5, and 101.3 Pa (equivalent to 150, 370, and 1000 ppm). In these acclimations, growth rates as well as cellular C and N contents were measured. In vivo activities of carbonic anhydrase (CA), photosynthetic O2 evolution, and CO2 and HCO3- fluxes were measured using membrane inlet mass spectrometry and the 14C disequilibrium technique. While no differences in growth rates were observed, elevated CO2 levels caused higher C and N quotas and stimulated photosynthesis and N2 fixation. Minimal extracellular CA (eCA) activity was observed, indicating a minor role in carbon acquisition. Rates of CO2 uptake were small relative to total inorganic carbon (Ci) fixation, whereas HCO{3 contributed more than 90% and varied only slightly over the light period and between CO2 treatments. The low eCA activity and preference for HCO3- were verified by the 14C disequilibrium technique. Regarding apparent affinities, half-saturation concentrations (K1/2) for photosynthetic O2 evolution and HCO3- uptake changed markedly over the day and with CO2 concentration. Leakage (CO2 efflux : Ci uptake) showed pronounced diurnal changes. Our findings do not support a direct CO2 effect on the carboxylation efficiency of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) but point to a shift in resource allocation among photosynthesis, carbon acquisition, and N2 fixation under elevated CO2 levels. The observed increase in photosynthesis and N2fixation could have potential biogeochemical implications, as it may stimulate productivity in N-limited oligotrophic regions and thus provide a negative feedback in rising atmospheric CO2 levels.
Resumo:
Anthropogenic CO2 emissions are acidifying the world's oceans. A growing body of evidence demonstrates that ocean acidification can impact survival, growth, development and physiology of marine invertebrates. Here we tested the impact of long term (up to 16 months) and trans life-cycle (adult, embryo/larvae and juvenile) exposure to elevated pCO2 (1200 µatm, compared to control 400 µatm) on the green sea urchin Strongylocentrotus droebachiensis. Female fecundity was decreased 4.5 fold when acclimated to elevated pCO2 for 4 months during reproductive conditioning while no difference was observed in females acclimated for 16 months. Moreover, adult pre-exposure for 4 months to elevated pCO2, had a direct negative impact on subsequent larval settlement success. Five to nine times fewer offspring reached the juvenile stage in cultures using gametes collected from adults previously acclimated to high pCO2 for 4 months. However, no difference in larval survival was observed when adults were pre-exposed for 16 months to elevated pCO2. pCO2 had no direct negative impact on juvenile survival except when both larvae and juveniles were raised in elevated pCO2. These negative effects on settlement success and juvenile survival can be attributed to carry-over effects from adults to larvae and from larvae to juveniles. Our results support the contention that adult sea urchins can acclimate to moderately elevated pCO2 in a matter of a few months and that carry-over effects can exacerbate the negative impact of ocean acidification on larvae and juveniles.
Resumo:
As a result of high anthropogenic CO2 emissions, the concentration of CO2 in the oceans has increased, causing a decrease in pH, known as ocean acidification (OA). Numerous studies have shown negative effects on marine invertebrates, and also that the early life stages are the most sensitive to OA. We studied the effects of OA on embryos and unfed larvae of the great scallop (Pecten maximus Lamarck), at pCO(2) levels of 469 (ambient), 807, 1164, and 1599 µatm until seven days after fertilization. To our knowledge, this is the first study on OA effects on larvae of this species. A drop in pCO(2) level the first 12 h was observed in the elevated pCO(2) groups due to a discontinuation in water flow to avoid escape of embryos. When the flow was restarted, pCO(2) level stabilized and was significantly different between all groups. OA affected both survival and shell growth negatively after seven days. Survival was reduced from 45% in the ambient group to 12% in the highest pCO(2) group. Shell length and height were reduced by 8 and 15 %, respectively, when pCO(2) increased from ambient to 1599 µatm. Development of normal hinges was negatively affected by elevated pCO(2) levels in both trochophore larvae after two days and veliger larvae after seven days. After seven days, deformities in the shell hinge were more connected to elevated pCO(2) levels than deformities in the shell edge. Embryos stained with calcein showed fluorescence in the newly formed shell area, indicating calcification of the shell at the early trochophore stage between one and two days after fertilization. Our results show that P. maximus embryos and early larvae may be negatively affected by elevated pCO(2) levels within the range of what is projected towards year 2250, although the initial drop in pCO(2) level may have overestimated the effect of the highest pCO(2) levels. Future work should focus on long-term effects on this species from hatching, throughout the larval stages, and further into the juvenile and adult stages.
Resumo:
Four strains of the coccolithophore E. huxleyi (RCC1212, RCC1216, RCC1238, RCC1256) were grown in dilute batch culture at four CO2 levels ranging from ~200 µatm to ~1200 µatm. Growth rate, particulate organic carbon content, and particulate inorganic carbon content were measured, and organic and inorganic carbon production calculated. The four strains did not show a uniform response to carbonate chemistry changes in any of the analysed parameters and none of the four strains displayed a response pattern previously described for this species. We conclude that the sensitivity of different strains of E. huxleyi to acidification differs substantially and that this likely has a genetic basis. We propose that this can explain apparently contradictory results reported in the literature.
Resumo:
The worldwide effects of ocean acidification (OA) on marine species are a growing concern. In temperate coastal seas, seaweeds are dominant primary producers that create complex habitats and supply energy to higher trophic levels. Studies on OA and macroalgae have focused on calcifying species and adult stages but, critically, they have overlooked the microscopic stages of the reproductive life cycle, which, for other anthropogenic stress e.g. UV-B radiation, are the most susceptible life-history phase. Also, environmental cues and stressors can cause changes in the sex ratio which has implications for the mating system and recruitment success. Here, we report the effects of pH (7.59-8.50) on meiospore germination and sex determination for the giant kelp, Macrocystis pyrifera (Laminariales), in the presence and absence of additional dissolved inorganic carbon (DIC). Lowered pH (7.59-7.60, using HCl-only) caused a significant reduction in germination, while added DIC had the opposite effect, indicating that increased CO2 at lower pH ameliorates physiological stress. This finding also highlights the importance of appropriate manipulation of seawater carbonate chemistry when testing the effects of ocean acidification on photosynthetic organisms. The proportion of male to female gametophytes did not vary significantly between treatments suggesting that pH was not a primary environmental modulator of sex. Relative to the baseline (pH 8.19), gametophytes were 32% larger under moderate OA (pH 7.86) compared to their size (10% increase) under extreme OA (pH 7.61). This study suggests that metabolically-active cells can compensate for the acidification of seawater. This homeostatic function minimises the negative effects of lower pH (high H+ ions) on cellular activity. The 6-9% reduction in germination success under extreme OA suggests that meiospores of M.pyrifera may be resistant to future ocean acidification.
Resumo:
Surprisingly little is known about potential effects of ocean acidification on krill of the Northern Hemisphere as ecologically very important food web component. Sub-adult individuals of the northern Atlantic krill species Nyctiphanes couchii (caught at Austevoll near Bergen, Norway, in January 2013) were exposed in the laboratory to four different levels of pCO2 (430, 800, 1,100, and 1,700 µatm) for 5 weeks in order to assess potential changes in a set of biological response variables. Survival decreased and the frequency of moulting-related deaths increased with increasing pCO2. Survival was considerably reduced at relatively high pCO2 of 1,700 µatm and tended to be negatively affected at 1,100 µatm pCO2. However, the experimental results show no significant effects of pCO2 on inter-moult period and growth at pCO2 levels below 1,100 µatm. No differences in length measurements of the carapace and uropod were observed across pCO2 levels, indicating no effect of changing carbonate chemistry on the morphology of those calciferous parts of the exoskeleton. The results suggest that sub-adult N. couchii may not suffer dramatically from predicted near-future changes in pCO2. However, potential detrimental effects on the moulting process and associated higher mortality at 1,100 µatm pCO2 cannot be excluded. Further experiments are needed in order to investigate whether early life stages of N. couchii show a different sensitivity to elevated sea water pCO2 and whether those results are transferable to other krill species of the Northern Hemisphere.