992 resultados para Accumulation rate, > 0.5 mm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date, work on the Great Bahama Bank's western, leeward margin has centred chiefly on seismic-scale expressions of carbonate sequences and systems tracts. However, periplatform, slope sediments also exhibit very well developed cyclicity on scales of decimetres to several metres. It is these small-scale, high-frequency cycles within the larger-scale facies successions of the Quaternary which form the main topic of this paper. Previous studies have shown that the small-scale cycles correlate to the orbitally forced, high-frequency sea-level changes. Therefore these cycles should indicate how sea level has affected the slope development and thus platform-margin evolution during this period. Through detailed, high-resolution sequence stratigraphy of the Great Bahama Bank's leeward margin, obtained via delta18O isotope and mineralogical (XRD) analyses, confined by U/Th dating and nannofossil bioevents, a greater understanding of the bedding geometries within the Pleistocene-Holocene seismic sequences and clues as to the nature of the slope development has been achieved. The high-resolution seismic profiles indicate that since the Plio-Pleistocene change in geometry, in which the Great Bahama Bank developed into a rimmed platform, continued steepening and subsequent progradation of the leeward margin has typified slope development during the Quaternary, which is described as an accretionary slope. However, on the basis of our observations we conclude that only the early to lower middle Pleistocene section (isotope stages 45-20) and the Holocene (isotope stage 1) of the leeward margin is accretionary. This indicates that a degree of erosion and/or by-passing has occurred on the leeward margin since the lower middle Pleistocene (isotope stage 19). During the first part of this period (isotope stages 19-12) erosion and/or by-passing occurred in the middle to lower slope regions and toe-of-slope. By the end of the upper middle to late Pleistocene phase (isotope stages 11-2) erosion also occurred on the upper slope. This erosion by currents at the toe-of-slope and oversteepening of the upper and middle slopes have led to back-cutting upslope and resulted in the progressive retreat of the toe-of-slope towards the platform to the east. However, the rise in sea level since the Last Glacial Maximum to its present-day level has allowed high productivity on the platform top during the Holocene and the deposition of a thick sediment wedge on the slope and sedimentation across the entire leeward flanks. This has led to the redevelopment of an accretionary slope and continued westward progradation of the Great Bahama Bank's western, leeward margin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lithology describes the geochemical, mineralogical, and physical properties of rocks. It plays a key role in many processes at the Earth surface, especially the fluxes of matter to soils, ecosystems, rivers, and oceans. Understanding these processes at the global scale requires a high resolution description of lithology. A new high resolution global lithological map (GLiM) was assembled from existing regional geological maps translated into lithological information with the help of regional literature. The GLiM represents the rock types of the Earth surface using 1,235,400 polygons. The lithological classification consists of three levels. The first level contains 16 lithological classes comparable to previously applied definitions in global lithological maps. The additional two levels contain 12 and 14 subclasses, respectively, which describe more specific rock attributes. According to the GLiM, the Earth is covered by 64 % sediments (a third of which is carbonates), 13 % metamorphics, 7 % plutonics, and 6 % volcanics, and 10% are covered by water or ice. The high resolution of the GLiM allows observation of regional lithological distributions which often vary from the global average. The GLiM enables regional analysis of Earth surface processes at global scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of investigations of Baikal bottom sediments from a long core (BDP-97) and several short (0-1 m) cores are presented. It can be shown that Holocene sediments in the Baikal basins consist of biogenic-terrigenous muds accumulated under still sedimentation conditions, and of turbidites formed during catastrophic events. The turbidites can be distinguished from the host sediments by their enrichment in heavy minerals and thus their high magnetic susceptibility. Often, Pliocene and Pleistocene diatom species observed in the Holocene sediments (mainly in the turbidites) point to redeposition of ancient offshore sediments. Our results indicate that deltas, littoral zones, and continental slopes are source areas of turbidites. The fact that the turbidites occur far from their sources confirms existence of high-energy turbidity currents responsible for long-distance lateral-sediment transport to the deep basins of the lake.