748 resultados para ATOPIC SENSITIZATION
Resumo:
Reproductive hormones have effects on the nervous system not directly related to reproductive function. In the rat, for example, luteinizing hormone releasing hormone has dramatic effects on learning and memory. The present work attempts to examine the effects of reproductive hormones on non-reproductive behaviors and the neural loci and mechanisms underlying these effects in Aplysia, an animal whose behaviors, reproductive hormones and neural circuitry have been well characterized.^ In Aplysia, the neurosecretory bag cells release several peptides that are responsible for eliciting egg laying. The effects of these peptides on the defensive tail-siphon withdrawal reflex, as well as sensitization of this reflex, were examined. Sensitization, a simple form of nonassociative learning, refers to the behavioral enhancement of a response to a test stimulus after the presentation of a strong stimulus, that may last minutes (short-term) or days (long-term). An extract of the bag cells (BCE) inhibited the baseline siphon component of the tail-siphon withdrawal reflex and suppressed long-term, but not short-term, sensitization of the reflex. Preliminary experiments suggest that BCE also affects the tail component of the tail-siphon withdrawal reflex.^ To determine the neural mechanisms underlying the inhibition of the baseline reflex, electrophysiological studies were performed using an in vitro analogue of the tail-siphon withdrawal reflex to examine the ability of BCE, as well as the individual bag cell peptides (BCPs), to modulate the circuitry of the reflex. Bag cell extract attenuated the synaptic strength of the monosynaptic connections between tail sensory neurons and tail motor neurons. When individually applied only $\beta$-BCP produced a similar attenuation. This effect of $\beta$-BCP was not dependent on changes in duration of the presynaptic action potential.^ An in vitro analogue of long-term sensitization training was developed to examine the mechanisms by which the BCPs may affect long-term sensitization of the tail-siphon withdrawal reflex. This analogue exhibited both short- and long-term facilitation of the connections between the tail sensory and motor neurons.^ The results of these behavioral and electrophysiological experiments suggest that the BCPs inhibit the tail-siphon withdrawal reflex, at least in part, by modulating the synaptic strength of the connections between the sensory neurons and motor neurons underlying the reflex. One candidate for this effect is $\beta$-BCP. Thus, the peptides which elicit egg laying may also serve other functions such as the inhibition of defensive reflexes. In addition, these experiments raise the possibility that BCPs may exert a long lasting effect ($>$24 hr), suppressing long-term sensitization of the tail-siphon withdrawal reflex. ^
Resumo:
Class I major histocompatibility complex (MHC) molecules induce either accelerated rejection or prolonged survival of allografts, presumably because of the presence of immunogenic or tolerogenic epitopes, respectively. To explore the molecular basis of this phenomenon, three chimeric class I molecules were constructed by substituting the rat class I RT1.A$\sp{\rm a}$ sequences with the N-terminus of HLA-A2.1 (N$\sp{\rm HLA-A2.1}$-RT1.A$\sp{\rm a}$), the $\alpha\sb1$ helix (h) with $\rm\alpha\sb{1h}\sp{u}$ sequences ( ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$) or the entire $\alpha\sb2$ domain (d) with $\rm\alpha\sb{2d}\sp{u}$ sequences ( ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$). Wild type (WT) and chimeric cDNAs were sequenced prior to transfection into Buffalo (BUF; RT1$\sp{\rm b}$) hepatoma cells. Stable transfectants were injected subcutaneously (s.c.) into different hosts 7 days prior to challenge with a heart allograft. In BUF hosts, chimeric ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$ accelerated the rejection of Wistar Furth (WF; RT1$\sp{\rm u}$) heart allografts, but had no effect on the survival of ACI (RT1$\sp{\rm a}$) grafts. In contrast, the ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$ (containing $\rm\alpha\sb{1d}\sp{a}$ sequences) immunized BUF recipients toward RT1$\sp{\rm a}$ grafts. In WF hosts, WT-RT1.A$\sp{\rm a}$ was a potent immunogen and accelerated ACI graft rejection, N$\sp{\rm HLA-A2.1}$-RT1.A$\sp{\rm a}$ was less effective and ($\rm\alpha\sb{\rm 1h}\sp{u}\rbrack$-RT1.A$\sp{\rm a}$ was not immunogenic. Thus, dominant and subdominant epitopes inducing in vivo sensitization to cardiac allografts are present in the $\alpha\sb1$ helix and the N-terminus, respectively. The failure of ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$ transfectants (containing recipient-type $\alpha\sb{\rm 2d}$ sequences) to sensitize WF hosts toward ACI (RT1$\sp{\rm a}$) grafts, despite the presence of donor-type immunogenic $\alpha\sb{\rm 1d}\sp{\rm a}$, suggests that "self-$\alpha\sb2$" sequences displayed on chimeric antigens interfere with immunogenicity. The ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$ transfectants injected s.c. prolonged the survival of WF (RT1$\sp{\rm u}$) hearts in ACI (RT1$\sp{\rm a}$) recipients. Furthermore, intra-portal injection of extracts from ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$, but not WT-RT1.A$\sp{\rm a}$ or RT1.A$\sp{\rm u}$, in conjunction with a brief cyclosporine course rendered ACI hosts permanently and specifically tolerant to donor-type WF cardiac allografts. Thus, immunodominant allodeterminants are present in the $\alpha\sb1$, but not the $\alpha\sb2$, domain of rat class I MHC molecules. Furthermore, the $\rm\alpha\sb{1h}\sp{u}$ immunogenic epitopes trigger tolerogenic responses when flanked by host-type N-terminal$\sp{\rm a}$ and $\rm\alpha\sb{2d}\sp{a}$ sequences. ^
Resumo:
Long-term sensitization in Aplysia is a well studied model for the examination of the cellular and molecules mechanisms of long-term memory. Several lines of evidence suggest long-term sensitization is mediated at least partially by long-term synaptic facilitation between the sensory and motor neurons. The sensitization training and one of its analogues, serotonin (5-HT), can induce long-term facilitation. In this study, another analogue to long-term sensitization training has been developed. Stimulation of peripheral nerves of pleural-pedal ganglia preparation induced long-term facilitation at both 24 hr and 48 hr. This is the first report that long-term facilitation in Aplysia persists for more than 24 hr, which is consistent with the observation that long-term sensitization lasts for more than one day. Thus, the data support the hypothesis that long-term facilitation is an important mechanism for long-term sensitization.^ One of the major differences between short-term and long-term facilitation is that long-term facilitation requires protein synthesis. Therefore, the effects of anisomycin, a protein synthesis inhibitor, on long-term facilitation was examined. Long-term facilitation induced by nerve stimulation was inhibited by 2 $\mu$M anisomycin, which inhibits $\sim$90% of protein synthesis. Nevertheless, at higher concentration (20 $\mu$M), anisomycin induced long-term facilitation by itself, which raises an interesting question about the function of anisomycin other than protein synthesis inhibition.^ Since protein synthesis is critical for long-term facilitation, a major goal is to identify and functionally characterize the molecules whose mRNA levels are altered during the formation of long-term facilitation. Behavioral training or its analogues (nerve stimulation and 5-HT) increases the level of mRNA of calmodulin (CaM). Thus, the role of Ca$\sp{2+}$-CaM-dependent protein kinase II (CaMKII), a major substrate of CaM, in long-term facilitation induced by nerve stimulation was examined. KN-62, a specific CaMKII inhibitor, did not block either the induction or the maintenance of long-term facilitation induced by nerve stimulation. These data indicate that CaMKII may not be involved in long-term facilitation. Another protein whose mRNA level of a molecule was increased by the behavioral training and the treatment of 5-HT is Aplysia tolloid/BMP-1-like protein 1 (apTBL-1). Tolloid in Drosophila and BMP-1 in human tissues are believed to be secreted as a metalloprotease to activate TGF-$\beta.$ Thus, the long-term effects of recombinant human TGF-$\beta1$ on synaptic strength were examined. Treatment of ganglia with TGF-$\beta1$ produced long-term facilitation, but not short-term or intermediate-term facilitation ($\le$4 hr). In addition, TGF-$\beta1$ and 5-HT were not additive in producing long-term facilitation, which indicates an interaction between two cascades. Moreover, 5-HT-induced facilitation (at both 24 hr and 48 hr) and nerve stimulation-induced facilitation (at 24 hr) were inhibited by TGF-$\beta$ sRII, a TGF-$\beta$ inhibitor. These results suggest that TGF-$\beta$ is part of the cascade of events underlying long-term sensitization, and also indicate that a signaling molecule used in development may also have functions in adult neuronal plasticity. ^
Resumo:
An important goal in the study of long-term memory is to understand the signals that induce and maintain the underlying neural alterations. In Aplysia, long-term sensitization of defensive reflexes has been examined in depth as a simple model of memory. Extensive studies of sensory neurons (SNs) in Aplysia have led to a cellular and molecular model of long-term memory that has greatly influenced memory research. According to this model, induction of long-term memory in Aplysia depends upon serotonin (5-HT) release and subsequent activation of the cAMP-PKA pathway in SNs. The evidence supporting this model mainly came from studies of long-term synaptic facilitation (LTF) using dissociated (and therefore axotomized) cells growing in culture. However, studies in more intact preparations have produced complex and discrepant results. Because these SNs function as nociceptors, and display similar alterations (long-term hyperexcitability [LTH], LTF, and growth) in models of memory and nerve injury, this study examined the roles of 5-HT and the cAMP-PKA pathway in the induction and expression of long-term, injury-related LTH and LTF in Aplysia SNs. ^ The results presented here suggest that 5-HT is not a primary signal for inducing LTH (and perhaps LTF) in Aplysia SNs. Prolonged treatment with 5-HT failed to induce LTH of Aplysia SNs in either ganglia or dissociated-cell preparations. Treatment with a 5-HT antagonist, methiothepin, during noxious nerve stimulation failed to reduce 24 hr LTH. Furthermore, while 5-HT can induce LTF of SN synapses, this LTF appears to be an indirect effect of 5-HT on other cells. When neural activity was suppressed by elevating divalent cations or by using tetrodotoxin (TTX), 5-HT failed to induce LTF. Unlike LTF, LTH of the SNs could not be produced, even when 5-HT treatment occurred in normal artificial sea water (ASW), suggesting that LTH and LTF are likely to depend on different signals for induction. However, methiothepin reduced the later expression of LTH induced by nerve stimulation, suggesting that 5-HT contributes to the maintenance of LTH in Aplysia SNs.n of somata from the ganglion (which axotomizes SNs) or crushing peripheral n. ^ In summary, this study found that 5-HT and the cAMP-PKA pathway are not involved in the induction of long-term, injury-related LTH of Aplysia SNs, but persistent release of 5-HT and persistent PKA activity contribute to the maintenance of LTH induced by injury. (Abstract shortened by UMI.)^
Resumo:
Sensitization is a simple form of learning which refers to an enhancement of a behavioral response resulting from an exposure to a novel stimulus. While sensitization is found throughout the animal world, little is known regarding the underlying neural mechanisms. By taking advantage of the simple nervous system of the marine mollusc Aplysia, I have begun to examine the cellular and molecular mechanisms underlying this simple form of learning. In an attempt to determine the generality of the mechanisms of neuromodulation underlying sensitization, I have investigated and compared the modulation of neurons involved in two defensive behaviors in Aplysia, the defensive inking response and defensive tail withdrawal.^ The motor neurons that produce the defensive release of ink receive a slow decreased conductance excitatory postsynaptic potential (EPSP) in response to sensitizing stimuli. Using electrophysiological techniques, it was found that serotonin (5-HT) mimicked the physiologically produced slow EPSP. 5-HT produced its response through a reduction in a voltage-independent conductance to K('+). The 5-HT sensitive K('+) conductance of the ink motor neurons was separate from the fast K('+), delayed K('+), and Ca('2+)-activated K('+) conductances found in these and other molluscan neurons. 5-HT was shown to produce a decrease in K('+) conductance in the ink motor neurons through an elevation of cellular cAMP.^ The mechanosensory neurons that participate in the defensive tail withdrawal response are also modulated by sensitizing stimuli through the action of 5-HT. Using electrophysiological techniques, it was found that 5-HT modulated the tail sensory neurons through a reduction in a voltage-dependent conductance to K('+). The serotonin-sensitive K('+) conductance was found to be largely a Ca('2+)-activated K('+) conductance. Much like the ink motor neurons, 5-HT produced its modulation through an elevation of cellular cAMP. While the actual K('+) conductance modulated by 5-HT in these two classes of neurons differs, the following generalizations can be made: (1) the effects of sensitizing stimuli are mimicked by 5-HT, (2) 5-HT produces its effect through an elevation of cellular cAMP, and (3) the conductance to K('+) is modulated by 5-HT. ^
Resumo:
Crosslinking of immunoglobulin E antibodies (IgE) bound at the surface of mast cells and subsequent mediator release is considered the most important trigger for allergic reactions. Therefore, the genetic control of IgE levels is studied in the context of allergic diseases, such as asthma, atopic rhinitis, or atopic dermatitis (AD). We performed genome-wide association studies in 161 Labrador Retrievers with regard to total and allergen-specific immunoglobulin E (IgE) levels. We identified a genome-wide significant association on CFA 5 with the antigen-specific IgE responsiveness to Acarus siro. We detected a second genome-wide significant association with respect to the antigen-specific IgE responsiveness to Tyrophagus putrescentiae at a different locus on chromosome 5. A. siro and T. putrescentiae both belong to the family Acaridae and represent so-called storage or forage mites. These forage mites are discussed as major allergen sources in canine AD. No obvious candidate gene for the regulation of IgE levels is located under the two association signals. Therefore our studies offer a chance of identifying a novel mechanism controlling the host's IgE response.
Resumo:
Drugs that inhibit insulin-like growth factor 1 (IGFI) receptor IGFIR were encouraging in early trials, but predictive biomarkers were lacking and the drugs provided insufficient benefit in unselected patients. In this study, we used genetic screening and downstream validation to identify the WNT pathway element DVL3 as a mediator of resistance to IGFIR inhibition. Sensitivity to IGFIR inhibition was enhanced specifically in vitro and in vivo by genetic or pharmacologic blockade of DVL3. In breast and prostate cancer cells, sensitization tracked with enhanced MEK-ERK activation and relied upon MEK activity and DVL3 expression. Mechanistic investigations showed that DVL3 is present in an adaptor complex that links IGFIR to RAS, which includes Shc, growth factor receptor-bound-2 (Grb2), son-of-sevenless (SOS), and the tumor suppressor DAB2. Dual DVL and DAB2 blockade synergized in activating ERKs and sensitizing cells to IGFIR inhibition, suggesting a nonredundant role for DVL3 in the Shc-Grb2-SOS complex. Clinically, tumors that responded to IGFIR inhibition contained relatively lower levels of DVL3 protein than resistant tumors, and DVL3 levels in tumors correlated inversely with progression-free survival in patients treated with IGFIR antibodies. Because IGFIR does not contain activating mutations analogous to EGFR variants associated with response to EGFR inhibitors, we suggest that IGF signaling achieves an equivalent integration at the postreceptor level through adaptor protein complexes, influencing cellular dependence on the IGF axis and identifying a patient population with potential to benefit from IGFIR inhibition.
Resumo:
Type 2 inflammation underlies allergic diseases such as atopic dermatitis, which is characterized by the accumulation of basophils and group 2 innate lymphoid cells (ILC2s) in inflamed skin lesions. Although murine studies have demonstrated that cutaneous basophil and ILC2 responses are dependent on thymic stromal lymphopoietin, whether these cell populations interact to regulate the development of cutaneous type 2 inflammation is poorly defined. In this study, we identify that basophils and ILC2s significantly accumulate in inflamed human and murine skin and form clusters not observed in control skin. We demonstrate that murine basophil responses precede ILC2 responses and that basophils are the dominant IL-4-enhanced GFP-expressing cell type in inflamed skin. Furthermore, basophils and IL-4 were necessary for the optimal accumulation of ILC2s and induction of atopic dermatitis-like disease. We show that ILC2s express IL-4Rα and proliferate in an IL-4-dependent manner. Additionally, basophil-derived IL-4 was required for cutaneous ILC2 responses in vivo and directly regulated ILC2 proliferation ex vivo. Collectively, these data reveal a previously unrecognized role for basophil-derived IL-4 in promoting ILC2 responses during cutaneous inflammation.
Resumo:
Immunoglobulin A (IgA) serves as the basis of the secretory immune system by protecting the lining of mucosal sites from pathogens. In both humans and dogs, IgA deficiency (IgAD) is associated with recurrent infections of mucosal sites and immune-mediated diseases. Low concentrations of serum IgA have previously been reported to occur in a number of dog breeds but no generally accepted cut-off value has been established for canine IgAD. The current study represents the largest screening to date of IgA in dogs in terms of both number of dogs (n = 1267) and number of breeds studied (n = 22). Serum IgA concentrations were quantified by using capture ELISA and were found to vary widely between breeds. We also found IgA to be positively correlated with age (p < 0.0001). Apart from the two breeds previously reported as predisposed to low IgA (Shar-Pei and German shepherd), we identified six additional breeds in which ≥10% of all tested dogs had very low (<0.07 g/l) IgA concentrations (Hovawart, Norwegian elkhound, Nova Scotia duck tolling retriever, Bullterrier, Golden retriever and Labrador retriever). In addition, we discovered low IgA concentrations to be significantly associated with canine atopic dermatitis (CAD, p < 0.0001) and pancreatic acinar atrophy (PAA, p = 0.04) in German shepherds.
Replication and fine-mapping of a QTL for recurrent airway obstruction in European Warmblood horses.
Resumo:
Recurrent airway obstruction (RAO), or 'heaves', is a common performance-limiting allergic respiratory disease of mature horses. It is related to sensitization and exposure to mouldy hay and has a familial basis with a complex mode of inheritance. In a previous study, we detected a QTL for RAO on ECA 13 in a half-sib family of European Warmblood horses. In this study, we genotyped additional markers in the family and narrowed the QTL down to about 1.5 Mb (23.7-25.2 Mb). We detected the strongest association with SNP BIEC2-224511 (24,309,405 bp). We also obtained SNP genotypes in an independent cohort of 646 unrelated Warmblood horses. There was no genome-wide significant association with RAO in these unrelated horses. However, we performed a genotypic association study of the SNPs on ECA 13 in these unrelated horses, and the SNP BIEC2-224511 also showed the strongest association with RAO in the unrelated horses (p(raw) = 0.00037). The T allele at this SNP was associated with RAO both in the family and the unrelated horses. Thus, the association study in the unrelated animals provides independent support for the previously detected QTL. The association study allows further narrowing of the QTL interval to about 0.5 Mb (24.0-24.5 Mb). We sequenced the coding regions of the genes in the critical region but did not find any associated coding variants. Therefore, the causative variant underlying this QTL is likely to be a regulatory mutation.
Resumo:
Endometriosis is an extremely prevalent estrogen-dependent condition characterized by the growth of ectopic endometrial tissue outside the uterine cavity, and is often presented with severe pain. Although the relationship between lesion and pain remains unclear, nerve fibers found in close proximity to endometriotic lesions may be related to pain. Also, women with endometriosis pain develop central sensitization. Endometriosis creates an inflammatory environment and recent research is beginning to elucidate the role of inflammation in stimulating peripheral nerve sensitization. In this review, we discuss endometriosis-associated inflammation, peripheral nerve fibers, and assess their potential mechanism of interaction. We propose that an interaction between lesions and nerve fibers, mediated by inflammation, may be important in endometriosis-associated pain.
Resumo:
Vareille M, Kieninger E, Alves MP, et al. Impaired type I and type III interferon induction and rhinovirus control in human cystic fibrosis airway epithelial cells. Thorax 2012;67:517-25. This article has been retracted. In our article recently published in Thorax, we described a novel mechanism explaining the increased susceptibility of patients with cystic fibrosis (CF) to rhinovirus infections, namely defective interferon type I and III production by CF airway epithelial cells. In experiments performed after publication of the article we were unable to consistently replicate our findings of deficient interferon type I and III production by CF airway epithelial cells upon rhinovirus infection. In the light of these results, we carried out detailed investigations of the data reported in the above manuscript and regrettably found evidence of deliberate manipulation of experimental data by the first author Dr M. Vareille. This manipulation was accompanied in some instances by absence of original data files. The manipulation/original data absence involved data presented in most, if not all of the figures, thus we wish to fully retract the paper and apologise to the readers of Thorax and to the scientific community for the inconvenience this has caused. We also checked data published by our group in manuscripts on which Dr Vareille was a co-author and found that data published in these manuscripts had not been manipulated. These two manuscripts, whose data and conclusions we stand by are: Edwards MR, Regamey N, Vareille M, et al. Impaired innate interferon induction in severe therapy resistant atopic asthmatic children. Mucosal Immunol 2013;6:797–806. doi: 10.1038/mi.2012.118. and Kieninger E, Vareille M, Kopf BS, et al. Lack of an exaggerated inflammatory response on virus infection in cystic fibrosis. Eur Respir J 2012;39:297–304. doi: 10.1183/09031936.00054511. Dr. Vareille has received a letter from the Secretary General of the University of Bern condemning her scientific misconduct as a severe offence against the rules of scientific integrity. Her current employers have also been informed. All co-authors of the publication including Dr. Vareille concur with the retraction statement.
Resumo:
BACKGROUND Risk factors promoting rhinovirus (RV) infections are inadequately described in healthy populations, especially infants. OBJECTIVES To determine the frequency of symptomatic and asymptomatic RV infections and identify possible risk factors from host and environment among otherwise healthy infants. METHODS In a prospective birth cohort, respiratory health was assessed in 41 term-born infants by weekly telephone interviews during the first year of life, and weekly nasal swabs were collected to determine RV prevalence. In a multilevel logistic regression model, associations between prevalence and respiratory symptoms during RV infections and host/environmental factors were determined. RESULTS 27% of nasal swabs in 41 infants tested positive for RVs. Risk factors for RV prevalence were autumn months (OR=1.71, p=0.01, 95% CI 1.13-2.61), outdoor temperatures between 5-10 °C (OR=2.33, p=0.001, 95% CI 1.41-3.86), older siblings (OR=2.60, p=0.001, 95% CI 1.50-4.51) and childcare attendance (OR=1.53, p=0.07, 95% CI 0.96-2.44). 51% of RV-positive samples were asymptomatic. Respiratory symptoms during RV infections were less likely during the first three months of life (OR=0.34, p=0.003, 95% CI 0.17-0.69) and in infants with atopic mothers (OR=0.44, p=0.008, 95% CI 0.24-0.80). Increased tidal volume (OR=1.67, p=0.03, 95% CI 1.04-2.68) and outdoor temperatures between 2-5 °C (OR=2.79, p=0.02, 95% CI 1.17-6.61) were associated with more symptoms. CONCLUSIONS RVs are highly prevalent during the first year of life, and most infections are asymptomatic. Frequency of RV infections is associated with environmental factors, while respiratory symptoms during RV infections are linked to host determinants like infant age, maternal atopy, or premorbid lung function.
Resumo:
Transforming growth factor beta-1 (TGF-β1) is a cytokine and neurotrophic factor whose neuromodulatory effects in Aplysia californica were recently described. Previous results demonstrated that TGF-β1 induces long-term increases in the efficacy of sensorimotor synapses, a neural correlate of sensitization of the defensive tail withdrawal reflex. These results provided the first evidence that a neurotrophic factor regulates neuronal plasticity associated with a simple form of learning in Aplysia, and raised many questions regarding the nature of the modulation. No homologs of TGF-β had previously been identified in Aplysia, and thus, it was not known whether components of TGF-β1 signaling pathways were present in Aplysia. Furthermore, the signaling mechanisms engaged by TGF-β1 had not been identified, and it was not known whether TGF-β1 regulated other aspects of neuronal function.^ The present investigation into the actions of TGF-β1 was initiated by examining the distribution of the type II TGF-β1 receptor, the ligand binding receptor. The receptor was widely distributed in the CNS and most neurons exhibited somatic and neuritic immunoreactivity. In addition, the ability of TGF-β1 to activate the cAMP/PKA and MAPK pathways, known to regulate several important aspects of neuronal function, was examined. TGF-β1 acutely decreased cAMP levels in sensory neurons, activated MAPK and triggered translocation of MAPK to the nucleus. MAPK activation was critical for both short- and long-term regulation of neuronal function by TGF-β1. TGF-β1 acutely decreased synaptic depression induced by low frequency stimuli in a MAPK-dependent manner. This regulation may result, at least in part, from the modulation of synapsin, a major peripheral synaptic vesicle protein. TGF-β1 stimulated MAPK-dependent phosphorylation of synapsin, a process believed to regulate synaptic vesicle mobilization from reserve to readily-releasable pools of neurotransmitter. In addition to its acute effect on synaptic efficacy, TGF-β1 also induced long-term increases in sensory neuron excitability. Whereas transient exposure to TGF-β1 was not sufficient to drive short-or long-term changes in excitability, prolonged exposure to TGF-β1 induced long-term changes in excitability that depended on MAPK. The results of these studies represent significant progress toward an understanding of the role of TGF-β1 in neuronal plasticity. ^
Resumo:
Interferons (IFNs) have been shown to exert antiviral, cell growth regulatory, and immunomodulatory effects on target cells. Both type I (α and β) and type II (γ) IFNs regulate cellular activities by specifically inducing the expression or activation of endogenous proteins that perform distinct biological functions. p202 is a 52 kDa nuclear phosphoprotein known to be induced by IFNs. p202 interacts with a variety of cellular transcription and growth regulatory factors and affects their functions. ^ In this report, we showed that the expression of p202 was associated with an anti-proliferative effect on human prostate cancer cells. Cells that expressed p202 showed reduced ability to grow in soft-agar, indicating a loss of transformation phenotype. More importantly, p202 expression reduced the tumorigenicity of human prostate cancer cells. p202-expressing cells exhibit an elevated level of hypophosphorylated form of pRb, and reduced level of cyclin B1 and p55CDC. ^ Our data suggest that p202 is a growth inhibitor gene in prostate cancer cells and its expression may also suppress transformation phenotype and tumorigenicity of prostate cancer cells. ^ In addition to inhibiting in vitro cell growth, suppressing the tumorigenicity of breast cancer cells in vivo, p202 expression could sensitize breast cancer cells to apoptosis induced by TNF-α treatment. One possible mechanism contributing to this sensitization is the inactivation of NF-κB by its interaction with p202. These results provide a scientific basis for a novel therapeutic strategy that combines p202 and TNF-α treatment against breast cancer. ^ It has been reported that NF-κB is constitutively active in human pancreatic cancer cells. Since p202 interacts with NF-κB and inhibits its activity, we examined a potential p202-mediated anti-tumor activity in pancreatic cancer. We used both ectopic and orthotopic xenograft models and demonstrated that p202 expression is associated with multiple anti-tumor activities that include inhibition of tumor growth, reduced tumorigenicity, prolonged survival, and remarkably, suppression of metastasis and angiogenesis. In vitro invasion assay also showed that p202-expressing pancreatic cancer cells are less invasive than those without p202 expression. That observation was supported by the findings that p202-expressing tumors showed reduced expression of angiogenic factors such as IL-8, and VEGF by inhibiting their transcription, and p202-expressing pancreatic cancer cells have reduced level of MAP-2 activity, a secreted protease activity important for metastasis. Together, our results strongly suggest that p202 expression mediates multiple anti-tumor activities against pancreatic cancer, and that may provide a scientific basis for developing a p202-based gene therapy in pancreatic cancer treatment. ^ Importantly, we demonstrated a treatment efficacy by using p202/SN2 liposome complex in a nude mice orthotopic breast cancer, and an ectopic pancreatic cancer xenograft model, through systemic and intra-tumor injection respectively. These results suggest a feasibility of using p202/SN2 liposome in future pre-clinical gene therapy experiments. ^