965 resultados para ASSOCIATIVE IONIZATION
Resumo:
It is well known that the interaction of polyelectrolytes with oppositely charged surfactants leads to an associative phase separation; however, the phase behavior of DNA and oppositely charged surfactants is more strongly associative than observed in other systems. A precipitate is formed with very low amounts of surfactant and DNA. DNA compaction is a general phenomenon in the presence of multivalent ions and positively charged surfaces; because of the high charge density there are strong attractive ion correlation effects. Techniques like phase diagram determinations, fluorescence microscopy, and ellipsometry were used to study these systems. The interaction between DNA and catanionic mixtures (i.e., mixtures of cationic and anionic surfactants) was also investigated. We observed that DNA compacts and adsorbs onto the surface of positively charged vesicles, and that the addition of an anionic surfactant can release DNA back into solution from a compact globular complex between DNA and the cationic surfactant. Finally, DNA interactions with polycations, chitosans with different chain lengths, were studied by fluorescence microscopy, in vivo transfection assays and cryogenic transmission electron microscopy. The general conclusion is that a chitosan effective in promoting compaction is also efficient in transfection.
Resumo:
The growing population on earth along with diminishing fossil deposits and the climate change debate calls out for a better utilization of renewable, bio-based materials. In a biorefinery perspective, the renewable biomass is converted into many different products such as fuels, chemicals, and materials, quite similar to the petroleum refinery industry. Since forests cover about one third of the land surface on earth, ligno-cellulosic biomass is the most abundant renewable resource available. The natural first step in a biorefinery is separation and isolation of the different compounds the biomass is comprised of. The major components in wood are cellulose, hemicellulose, and lignin, all of which can be made into various end-products. Today, focus normally lies on utilizing only one component, e.g., the cellulose in the Kraft pulping process. It would be highly desirable to utilize all the different compounds, both from an economical and environmental point of view. The separation process should therefore be optimized. Hemicelluloses can partly be extracted with hot-water prior to pulping. Depending in the severity of the extraction, the hemicelluloses are degraded to various degrees. In order to be able to choose from a variety of different end-products, the hemicelluloses should be as intact as possible after the extraction. The main focus of this work has been on preserving the hemicellulose molar mass throughout the extraction at a high yield by actively controlling the extraction pH at the high temperatures used. Since it has not been possible to measure pH during an extraction due to the high temperatures, the extraction pH has remained a “black box”. Therefore, a high-temperature in-line pH measuring system was developed, validated, and tested for hot-water wood extractions. One crucial step in the measurements is calibration, therefore extensive efforts was put on developing a reliable calibration procedure. Initial extractions with wood showed that the actual extraction pH was ~0.35 pH units higher than previously believed. The measuring system was also equipped with a controller connected to a pump. With this addition it was possible to control the extraction to any desired pH set point. When the pH dropped below the set point, the controller started pumping in alkali and by that the desired set point was maintained very accurately. Analyses of the extracted hemicelluloses showed that less hemicelluloses were extracted at higher pH but with a higher molar-mass. Monomer formation could, at a certain pH level, be completely inhibited. Increasing the temperature, but maintaining a specific pH set point, would speed up the extraction without degrading the molar-mass of the hemicelluloses and thereby intensifying the extraction. The diffusion of the dissolved hemicelluloses from the wood particle is a major part of the extraction process. Therefore, a particle size study ranging from 0.5 mm wood particles to industrial size wood chips was conducted to investigate the internal mass transfer of the hemicelluloses. Unsurprisingly, it showed that hemicelluloses were extracted faster from smaller wood particles than larger although it did not seem to have a substantial effect on the average molar mass of the extracted hemicelluloses. However, smaller particle sizes require more energy to manufacture and thus increases the economic cost. Since bark comprises 10 – 15 % of a tree, it is important to also consider it in a biorefinery concept. Spruce inner and outer bark was hot-water extracted separately to investigate the possibility to isolate the bark hemicelluloses. It was showed that the bark hemicelluloses comprised mostly of pectic material and differed considerably from the wood hemicelluloses. The bark hemicelluloses, or pectins, could be extracted at lower temperatures than the wood hemicelluloses. A chemical characterization, done separately on inner and outer bark, showed that inner bark contained over 10 % stilbene glucosides that could be extracted already at 100 °C with aqueous acetone.
Resumo:
Novel word learning has been rarely studied in people with aphasia (PWA), although it can provide a relatively pure measure of their learning potential, and thereby contribute to the development of effective aphasia treatment methods. The main aim of the present thesis was to explore the capacity of PWA for associative learning of word–referent pairings and cognitive-linguistic factors related to it. More specifically, the thesis examined learning and long-term maintenance of the learned pairings, the role of lexical-semantic abilities in learning as well as acquisition of phonological versus semantic information in associative novel word learning. Furthermore, the effect of modality on associative novel word learning and the neural underpinnings of successful learning were explored. The learning experiments utilized the Ancient Farming Equipment (AFE) paradigm that employs drawings of unfamiliar referents and their unfamiliar names. Case studies of Finnishand English-speaking people with chronic aphasia (n = 6) were conducted in the investigation. The learning results of PWA were compared to those of healthy control participants, and active production of the novel words and their semantic definitions was used as learning outcome measures. PWA learned novel word–novel referent pairings, but the variation between individuals was very wide, from more modest outcomes (Studies I–II) up to levels on a par with healthy individuals (Studies III–IV). In incidental learning of semantic definitions, none of the PWA reached the performance level of the healthy control participants. Some PWA maintained part of the learning outcomes up to months post-training, and one individual showed full maintenance of the novel words at six months post-training (Study IV). Intact lexical-semantic processing skills promoted learning in PWA (Studies I–II) but poor phonological short-term memory capacities did not rule out novel word learning. In two PWA with successful learning and long-term maintenance of novel word–novel referent pairings, learning relied on orthographic input while auditory input led to significantly inferior learning outcomes (Studies III–IV). In one of these individuals, this previously undetected modalityspecific learning ability was successfully translated into training with familiar but inaccessible everyday words (Study IV). Functional magnetic resonance imaging revealed that this individual had a disconnected dorsal speech processing pathway in the left hemisphere, but a right-hemispheric neural network mediated successful novel word learning via reading. Finally, the results of Study III suggested that the cognitive-linguistic profile may not always predict the optimal learning channel for an individual with aphasia. Small-scale learning probes seem therefore useful in revealing functional learning channels in post-stroke aphasia.
Resumo:
Mouse PNAS-4 (mPNAS-4) has 96% identity with human PNAS-4 (hPNAS-4) in primary sequence and has been reported to be involved in the apoptotic response to DNA damage. However, there have been no studies reported of the biological functions of mPNAS-4. In studies conducted by our group (unpublished data), it was interesting to note that overexpression of mPNAS-4 promoted apoptotic death in Lewis lung carcinoma cells (LL2) and colon carcinoma cells (CT26) of mice both in vitro and in vivo. In our studies, mPNAS-4 was cloned into the pGEX-6P-1 vector with GST tag at N-terminal in Escherichia coli strain BL21(DE3). The soluble and insoluble expression of recombinant protein mPNAS-4 (rmPNAS-4) was temperature-dependent. The majority of rmPNAS-4 was insoluble at 37°C, while it was almost exclusively expressed in soluble form at 20°C. The soluble rmPNAS-4 was purified by one-step affinity purification, using a glutathione Sepharose 4B column. The rmPNAS-4 protein was further identified by electrospray ionization-mass spectrometry analysis. The search parameters of the parent and fragment mass error tolerance were set at 0.1 and 0.05 kDa, respectively, and the sequence coverage of search result was 28%. The purified rmPNAS-4 was further used as immunogen to raise polyclonal antibodies in New Zealand white rabbit, which were suitable to detect both the recombinant and the endogenous mPNAS-4 in mouse brain tissue and LL2 cells after immunoblotting and/or immunostaining. The purified rmPNAS-4 and our prepared anti-mPNAS-4 polyclonal antibodies may provide useful tools for future biological function studies for mPNAS.
Resumo:
To illustrate the construction of precursor complementary DNAs, we isolated mRNAs from whole venom samples. After reverse transcription polymerase chain reaction (RT-PCR), we amplified the cDNA coding for a neurotoxic protein, phospholipase A2 D49 (PLA2 D49), from the venom of Crotalus durissus collilineatus (Cdc PLA2). The cDNA encoding Cdc PLA2 from whole venom was sequenced. The deduced amino acid sequence of this cDNA has high overall sequence identity with the group II PLA2 protein family. Cdc PLA2 has 14 cysteine residues capable of forming seven disulfide bonds that characterize this group of PLA2 enzymes. Cdc PLA2 was isolated using conventional Sephadex G75 column chromatography and reverse-phase high performance liquid chromatography (RP-HPLC). The molecular mass was estimated using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. We tested the neuromuscular blocking activities on chick biventer cervicis neuromuscular tissue. Phylogenetic analysis of Cdc PLA2 showed the existence of two lines of N6-PLA2, denominated F24 and S24. Apparently, the sequences of the New World’s N6-F24-PLA2 are similar to those of the agkistrodotoxin from the Asian genus Gloydius. The sequences of N6-S24-PLA2 are similar to the sequence of trimucrotoxin from the genus Protobothrops, found in the Old World.
Resumo:
The incidence of superficial or deep-seated infections due to Candida glabrata has increased markedly, probably because of the low intrinsic susceptibility of this microorganism to azole antifungals and its relatively high propensity to acquire azole resistance. To determine changes in the C. glabrata proteome associated with petite mutations, cytosolic extracts from an azole-resistant petite mutant of C. glabrata induced by exposure to ethidium bromide, and from its azole-susceptible parent isolate were compared by two-dimensional polyacrylamide gel electrophoresis. Proteins of interest were identified by peptide mass fingerprinting or sequence tagging using a matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometer. Tryptic peptides from a total of 160 Coomassie-positive spots were analyzed for each strain. Sixty-five different proteins were identified in the cytosolic extracts of the parent strain and 58 in the petite mutant. Among the proteins identified, 10 were higher in the mutant strain, whereas 23 were lower compared to the parent strain. The results revealed a significant decrease in the enzymes associated with the metabolic rate of mutant cells such as aconitase, transaldolase, and pyruvate kinase, and changes in the levels of specific heat shock proteins. Moreover, transketolase, aconitase and catalase activity measurements decreased significantly in the ethidium bromide-induced petite mutant. These data may be useful for designing experiments to obtain a better understanding of the nuclear response to impairment of mitochondrial function associated with this mutation in C. glabrata.
Resumo:
It is well recognized that stressful experiences promote robust emotional memories, which are well remembered. The amygdaloid complex, principally the basolateral complex (BLA), plays a pivotal role in fear memory and in the modulation of stress-induced emotional responses. A large number of reports have revealed that GABAergic interneurons provide a powerful inhibitory control of the activity of projecting glutamatergic neurons in the BLA. Indeed, a reduced GABAergic control in the BLA is essential for the stress-induced influence on the emergence of associative fear memory and on the generation of long-term potentiation (LTP) in BLA neurons. The extracellular signal-regulated kinase (ERK) subfamily of the mitogen-activated protein kinase (MAPK) signaling pathway in the BLA plays a central role in the consolidation process and synaptic plasticity. In support of the view that stress facilitates long-term fear memory, stressed animals exhibited a phospho-ERK2 (pERK2) increase in the BLA, suggesting the involvement of this mechanism in the promoting influence of threatening stimuli on the consolidation fear memory. Moreover, the occurrence of reactivation-induced lability is prevented when fear memory is encoded under intense stressful conditions since the memory trace remains immune to disruption after recall in previously stressed animals. Thus, the underlying mechanism in retrieval-induced instability seems not to be functional in memories formed under stress. All these findings are indicative that stress influences both the consolidation and reconsolidation fear memory processes. Thus, it seems reasonable to propose that the emotional state generated by an environmental challenge critically modulates the formation and maintenance of long-term fear memory.
Resumo:
The striatum, the largest component of the basal ganglia, is usually subdivided into associative, motor and limbic components. However, the electrophysiological interactions between these three subsystems during behavior remain largely unknown. We hypothesized that the striatum might be particularly active during exploratory behavior, which is presumably associated with increased attention. We investigated the modulation of local field potentials (LFPs) in the striatum during attentive wakefulness in freely moving rats. To this end, we implanted microelectrodes into different parts of the striatum of Wistar rats, as well as into the motor, associative and limbic cortices. We then used electromyograms to identify motor activity and analyzed the instantaneous frequency, power spectra and partial directed coherence during exploratory behavior. We observed fine modulation in the theta frequency range of striatal LFPs in 92.5 ± 2.5% of all epochs of exploratory behavior. Concomitantly, the theta power spectrum increased in all striatal channels (P < 0.001), and coherence analysis revealed strong connectivity (coefficients >0.7) between the primary motor cortex and the rostral part of the caudatoputamen nucleus, as well as among all striatal channels (P < 0.001). Conclusively, we observed a pattern of strong theta band activation in the entire striatum during attentive wakefulness, as well as a strong coherence between the motor cortex and the entire striatum. We suggest that this activation reflects the integration of motor, cognitive and limbic systems during attentive wakefulness.
Resumo:
Natural products produced by microorganisms have been an important source of new substances and lead compounds for the pharmaceutical industry. Chromobacterium violaceum is a Gram-negative β-proteobacterium, abundant in water and soil in tropical and subtropical regions and it produces violacein, a pigment that has shown great pharmaceutical potential. Crude extracts of five Brazilian isolates of Chromobacterium sp (0.25, 2.5, 25, and 250 µg/mL) were evaluated in an in vitro antitumor activity assay with nine human tumor cells. Secondary metabolic profiles were analyzed by liquid chromatography and electrospray ionization mass spectrometry resulting in the identification of violacein in all extracts, whereas FK228 was detected only in EtCE 308 and EtCE 592 extracts. AcCE and EtCE 310 extracts showed selectivity for NCI/ADR-RES cells in the in vitro assay and were evaluated in vivo in the solid Ehrlich tumor model, resulting in 50.3 and 54.6% growth inhibition, respectively. The crude extracts of Chromobacterium sp isolates showed potential and selective antitumor activities for certain human tumor cells, making them a potential source of lead compounds. Furthermore, the results suggest that other compounds, in addition to violacein, deoxyviolacein and FK228, may be involved in the antitumor effect observed.
Resumo:
Bipolar disorder (BD) is a common psychiatric mood disorder affecting more than 1-2% of the general population of different European countries. Unfortunately, there is no objective laboratory-based test to aid BD diagnosis or monitor its progression, and little is known about the molecular basis of BD. Here, we performed a comparative proteomic study to identify differentially expressed plasma proteins in various BD mood states (depressed BD, manic BD, and euthymic BD) relative to healthy controls. A total of 10 euthymic BD, 20 depressed BD, 15 manic BD, and 20 demographically matched healthy control subjects were recruited. Seven high-abundance proteins were immunodepleted in plasma samples from the 4 experimental groups, which were then subjected to proteome-wide expression profiling by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight tandem mass spectrometry. Proteomic results were validated by immunoblotting and bioinformatically analyzed using MetaCore. From a total of 32 proteins identified with 1.5-fold changes in expression compared with healthy controls, 16 proteins were perturbed in BD independent of mood state, while 16 proteins were specifically associated with particular BD mood states. Two mood-independent differential proteins, apolipoprotein (Apo) A1 and Apo L1, suggest that BD pathophysiology may be associated with early perturbations in lipid metabolism. Moreover, down-regulation of one mood-dependent protein, carbonic anhydrase 1 (CA-1), suggests it may be involved in the pathophysiology of depressive episodes in BD. Thus, BD pathophysiology may be associated with early perturbations in lipid metabolism that are independent of mood state, while CA-1 may be involved in the pathophysiology of depressive episodes.
Resumo:
(+)-Dehydrofukinone (DHF) is a major component of the essential oil of Nectandra grandiflora (Lauraceae), and exerts a depressant effect on the central nervous system of fish. However, the neuronal mechanism underlying DHF action remains unknown. This study aimed to investigate the action of DHF on GABAA receptors using a silver catfish (Rhamdia quelen) model. Additionally, we investigated the effect of DHF exposure on stress-induced cortisol modulation. Chemical identification was performed using gas chromatography-mass spectrometry and purity was evaluated using gas chromatography with a flame ionization detector. To an aquarium, we applied between 2.5 and 50 mg/L DHF diluted in ethanol, in combination with 42.7 mg/L diazepam. DHF within the range of 10-20 mg/L acted collaboratively in combination with diazepam, but the sedative action of DHF was reversed by 3 mg/L flumazenil. Additionally, fish exposed for 24 h to 2.5-20 mg/L DHF showed no side effects and there was sustained sedation during the first 12 h of drug exposure with 10-20 mg/L DHF. DHF pretreatment did not increase plasma cortisol levels in fish subjected to a stress protocol. Moreover, the stress-induced cortisol peak was absent following pretreatment with 20 mg/L DHF. DHF proved to be a relatively safe sedative or anesthetic, which interacts with GABAergic and cortisol pathways in fish.
Resumo:
The incidence of the trichothecenes deoxynivalenol (DON), diacetoxyscirpenol (DAS), and T2 toxin (T2) in popcorn was investigated in 90 samples, belonging to 2 commercial and 28 experimental hybrids planted at experimental stations of the Agronomic Institute of Campinas at the locations of Campinas, Mococa, and Capão Bonito, and in 15 samples of popcorn, 9 branded and 6 unbranded, acquired from commercial outlets in the city of Campinas, SP. The samples were analyzed by gas chromatography with flame ionization detector combined with an alumina:carbon cleanup column. The detection limits were 30ng/g for DON, 50ng/g for DAS, and 40ng/g for T2. Five samples were contaminated with DON, four of them commercial and one from an experimental cultivar. The level of contamination in the commercial samples ranged from 30 to 40ng/g. The sample from the experimental cultivar contained 770ng/g DON. DAS and T2 were not detected in any of the popcorn samples analyzed.
Resumo:
A simple and low cost method to determine volatile contaminants in post-consumer recycled PET flakes was developed and validated by Headspace Dynamic Concentration and Gas Chromatography-Flame Ionization Detection (HDC-GC-FID). The analytical parameters evaluated by using surrogates include: correlation coefficient, detection limit, quantification limit, accuracy, intra-assay precision, and inter-assay precision. In order to compare the efficiency of the proposed method to recognized automated techniques, post-consumer PET packaging samples collected in Brazil were used. GC-MS was used to confirm the identity of the substances identified in the PET packaging. Some of the identified contaminants were estimated in the post-consumer material at concentrations higher than 220 ng.g-1. The findings in this work corroborate data available in the scientific literature pointing out the suitability of the proposed analytical method.
Resumo:
Fruits and nuts from the North and Northeast regions of Brazil were collected to determine the fatty acid profile of their oils. The species studied were Brazil (Bertholletia excelsa H.B.K.), Mucajá (Couma rigida M.), Inajá (Maximiliana maripa D.), Jenipapo (Genipa Americana L.), and Buriti (Mauritia flexuosa L.) nuts. Fatty acid methyl esters were analyzed by gas chromatography with flame ionization detection (GC-FID). Brazil nut major fatty acid was 18:3n-3 (α-linolenic acid), and Buriti nut had approximately 23 times more 18:3n-3 than the pulp. Mucajá nut presented high content of 12:0 (lauric acid) and 16:0 (palmitic acid), and Mucajá pulp showed significant levels of 18:2n-6 (linoleic acid). Considering the PUFA (polyunsaturated fatty acid) sum values, almost all fruits and nuts analyzed presented very high levels of these compounds. Regarding n-6/n-3 ratio, only Brazil Nut, Buriti Nut, Inajá pulp, and Jenipapo pulp corresponded to the desired profile. These Brazilian fruits and nuts could be of potential interest due to their high nutritive value and lipid content.
Resumo:
Encapsulated specialty oils commercialized in São Paulo state, Brazil, were evaluated for their identity (fatty acids profile) and compliance with nutrition labeling (fatty acids and Vitamin E (alpha tocopherol) contents). Twenty one samples [flaxseed oil (6), evening primrose (5), safflower (8), borage (1), and black currant (1)] purchased from local markets or collected by the health surveillance agency were analyzed. The fatty acids and vitamin E contents were analyzed by gas chromatography with flame ionization detector and liquid chromatography with UV detector, respectively. Nine samples were adulterated (5 samples of safflower oil, 3 of flaxseed oil, and one of evening primrose). Among them, 3 flaxseed and 2 safflower oil samples were probably adulterated by the addition of soybean oil. Conjugated linoleic acid (CLA) was found in two safflower oils samples although the sale of oils with conjugated linoleic acid (CLA) is not permitted by the National Health Surveillance Agency in Brazil (ANVISA). Only two samples presented all values in compliance with nutrition labeling (one safflower oil sample and one borage oil sample). The results show that a continuous monitoring of encapsulated specialty oils commercialized in Brazil is necessary including a greater number of samples and sanitary surveillance.