933 resultados para ALGORITHMIC CONVERGENCE
Resumo:
In the last twenty years genetic algorithms (GAs) were applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, and pattern and speech recognition (Bäck et al., 1997). In robotics the problems of trajectory planning, collision avoidance and manipulator structure design considering a single criteria has been solved using several techniques (Alander, 2003). Most engineering applications require the optimization of several criteria simultaneously. Often the problems are complex, include discrete and continuous variables and there is no prior knowledge about the search space. These kind of problems are very more complex, since they consider multiple design criteria simultaneously within the optimization procedure. This is known as a multi-criteria (or multiobjective) optimization, that has been addressed successfully through GAs (Deb, 2001). The overall aim of multi-criteria evolutionary algorithms is to achieve a set of non-dominated optimal solutions known as Pareto front. At the end of the optimization procedure, instead of a single optimal (or near optimal) solution, the decision maker can select a solution from the Pareto front. Some of the key issues in multi-criteria GAs are: i) the number of objectives, ii) to obtain a Pareto front as wide as possible and iii) to achieve a Pareto front uniformly spread. Indeed, multi-objective techniques using GAs have been increasing in relevance as a research area. In 1989, Goldberg suggested the use of a GA to solve multi-objective problems and since then other researchers have been developing new methods, such as the multi-objective genetic algorithm (MOGA) (Fonseca & Fleming, 1995), the non-dominated sorted genetic algorithm (NSGA) (Deb, 2001), and the niched Pareto genetic algorithm (NPGA) (Horn et al., 1994), among several other variants (Coello, 1998). In this work the trajectory planning problem considers: i) robots with 2 and 3 degrees of freedom (dof ), ii) the inclusion of obstacles in the workspace and iii) up to five criteria that are used to qualify the evolving trajectory, namely the: joint traveling distance, joint velocity, end effector / Cartesian distance, end effector / Cartesian velocity and energy involved. These criteria are used to minimize the joint and end effector traveled distance, trajectory ripple and energy required by the manipulator to reach at destination point. Bearing this ideas in mind, the paper addresses the planning of robot trajectories, meaning the development of an algorithm to find a continuous motion that takes the manipulator from a given starting configuration up to a desired end position without colliding with any obstacle in the workspace. The chapter is organized as follows. Section 2 describes the trajectory planning and several approaches proposed in the literature. Section 3 formulates the problem, namely the representation adopted to solve the trajectory planning and the objectives considered in the optimization. Section 4 studies the algorithm convergence. Section 5 studies a 2R manipulator (i.e., a robot with two rotational joints/links) when the optimization trajectory considers two and five objectives. Sections 6 and 7 show the results for the 3R redundant manipulator with five goals and for other complementary experiments are described, respectively. Finally, section 8 draws the main conclusions.
Resumo:
The Maxwell equations, expressing the fundamental laws of electricity and magnetism, only involve the integer-order calculus. However, several effects present in electromagnetism, motivated recently an analysis under the fractional calculus (FC) perspective. In fact, this mathematical concept allows a deeper insight into many phenomena that classical models overlook. On the other hand, genetic algorithms (GA) are an important tool to solve optimization problems that occur in engineering. In this work we use FC and GA to implement the electrical potential of fractional order. The performance of the GA scheme and the convergence of the resulting approximations are analyzed.
Resumo:
This paper presents a brief history of the western music: from its genesis to serialism and the Darmstadt school. Also some mathematical aspects of music are then presented and confronted with music as a form of art. The question is, are these two distinct aspects compatible? Can computers be of real help in automatic composition? The more appealing algorithmic approach is evolutionary computation as it offers creativity potential. Therefore, the Evolutionary Algorithms are then introduced and some results of GAs and GPs application to music generation are analysed.
Resumo:
Fractional calculus (FC) is currently being applied in many areas of science and technology. In fact, this mathematical concept helps the researches to have a deeper insight about several phenomena that integer order models overlook. Genetic algorithms (GA) are an important tool to solve optimization problems that occur in engineering. This methodology applies the concepts that describe biological evolution to obtain optimal solution in many different applications. In this line of thought, in this work we use the FC and the GA concepts to implement the electrical fractional order potential. The performance of the GA scheme, and the convergence of the resulting approximation, are analyzed. The results are analyzed for different number of charges and several fractional orders.
Resumo:
Finding the structure of a confined liquid crystal is a difficult task since both the density and order parameter profiles are nonuniform. Starting from a microscopic model and density-functional theory, one has to either (i) solve a nonlinear, integral Euler-Lagrange equation, or (ii) perform a direct multidimensional free energy minimization. The traditional implementations of both approaches are computationally expensive and plagued with convergence problems. Here, as an alternative, we introduce an unsupervised variant of the multilayer perceptron (MLP) artificial neural network for minimizing the free energy of a fluid of hard nonspherical particles confined between planar substrates of variable penetrability. We then test our algorithm by comparing its results for the structure (density-orientation profiles) and equilibrium free energy with those obtained by standard iterative solution of the Euler-Lagrange equations and with Monte Carlo simulation results. Very good agreement is found and the MLP method proves competitively fast, flexible, and refinable. Furthermore, it can be readily generalized to the richer experimental patterned-substrate geometries that are now experimentally realizable but very problematic to conventional theoretical treatments.
Resumo:
This paper proposes a novel method for controlling the convergence rate of a particle swarm optimization algorithm using fractional calculus (FC) concepts. The optimization is tested for several well-known functions and the relationship between the fractional order velocity and the convergence of the algorithm is observed. The FC demonstrates a potential for interpreting evolution of the algorithm and to control its convergence.
Resumo:
We introduce the notions of equilibrium distribution and time of convergence in discrete non-autonomous graphs. Under some conditions we give an estimate to the convergence time to the equilibrium distribution using the second largest eigenvalue of some matrices associated with the system.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Biotecnologia
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
A comparative study concerning the robustness of a novel, Fixed Point Transformations/Singular Value Decomposition (FPT/SVD)-based adaptive controller and the Slotine-Li (S&L) approach is given by numerical simulations using a three degree of freedom paradigm of typical Classical Mechanical systems, the cart + double pendulum. The effects of the imprecision of the available dynamical model, presence of dynamic friction at the axles of the drives, and the existence of external disturbance forces unknown and not modeled by the controller are considered. While the Slotine-Li approach tries to identify the parameters of the formally precise, available analytical model of the controlled system with the implicit assumption that the generalized forces are precisely known, the novel one makes do with a very rough, affine form and a formally more precise approximate model of that system, and uses temporal observations of its desired vs. realized responses. Furthermore, it does not assume the lack of unknown perturbations caused either by internal friction and/or external disturbances. Its another advantage is that it needs the execution of the SVD as a relatively time-consuming operation on a grid of a rough system-model only one time, before the commencement of the control cycle within which it works only with simple computations. The simulation examples exemplify the superiority of the FPT/SVD-based control that otherwise has the deficiency that it can get out of the region of its convergence. Therefore its design and use needs preliminary simulation investigations. However, the simulations also exemplify that its convergence can be guaranteed for various practical purposes.
Resumo:
Several phenomena present in electrical systems motivated the development of comprehensive models based on the theory of fractional calculus (FC). Bearing these ideas in mind, in this work are applied the FC concepts to define, and to evaluate, the electrical potential of fractional order, based in a genetic algorithm optimization scheme. The feasibility and the convergence of the proposed method are evaluated.
Resumo:
Com o crescimento da informação disponível na Web, arquivos pessoais e profissionais, protagonizado tanto pelo aumento da capacidade de armazenamento de dados, como pelo aumento exponencial da capacidade de processamento dos computadores, e do fácil acesso a essa mesma informação, um enorme fluxo de produção e distribuição de conteúdos audiovisuais foi gerado. No entanto, e apesar de existirem mecanismos para a indexação desses conteúdos com o objectivo de permitir a pesquisa e acesso aos mesmos, estes apresentam normalmente uma grande complexidade algorítmica ou exigem a contratação de pessoal altamente qualificado, para a verificação e categorização dos conteúdos. Nesta dissertação pretende-se estudar soluções de anotação colaborativa de conteúdos e desenvolver uma ferramenta que facilite a anotação de um arquivo de conteúdos audiovisuais. A abordagem implementada é baseada no conceito dos “Jogos com Propósito” (GWAP – Game With a Purpose) e permite que os utilizadores criem tags (metadatos na forma de palavras-chave) de forma a atribuir um significado a um objecto a ser categorizado. Assim, e como primeiro objectivo, foi desenvolvido um jogo com o propósito não só de entretenimento, mas também que permita a criação de anotações audiovisuais perante os vídeos que são apresentados ao jogador e, que desta forma, se melhore a indexação e categorização dos mesmos. A aplicação desenvolvida permite ainda a visualização dos conteúdos e metadatos categorizados, e com o objectivo de criação de mais um elemento informativo, permite a inserção de um like num determinado instante de tempo do vídeo. A grande vantagem da aplicação desenvolvida reside no facto de adicionar anotações a pontos específicos do vídeo, mais concretamente aos seus instantes de tempo. Trata-se de uma funcionalidade nova, não disponível em outras aplicações de anotação colaborativa de conteúdos audiovisuais. Com isto, o acesso aos conteúdos será bastante mais eficaz pois será possível aceder, por pesquisa, a pontos específicos no interior de um vídeo.
Resumo:
The economic development of a region depends on the speed that people and goods can travel. The reduction of people and goods travel time can be achieved by planning smooth road layouts, which are obtained by crossing natural obstacles such as hills, by tunneling at great depths, and allowing the reduction of the road alignment length. The stress state in rock masses at such depths, either because of the overburden or due to the tectonic conditions of the rock mass induces high convergences of the tunnel walls. These high convergence values are incompatible with the supports structural performance installed in the excavation stabilization. In this article it is intended to evaluate and analyze some of the solutions already implemented in several similar geological and geotechnical situations, in order to establish a methodological principle for the design of the tunnels included in a highway section under construction in the region influenced by the Himalayas, in the state of Himachal Pradesh (India) and referenced by "four laning of Kiratpur to Ner Chowk section".
Resumo:
The economic development of a region depends on the speed that people and goods can travel. The reduction of people and goods travel time can be achieved by planning smooth road layouts, which are obtained by crossing natural obstacles such as hills, by tunneling at great depths, and allowing the reduction of the road alignment length. The stress state in rock masses at such depths, either because of the overburden or due to the tectonic conditions of the rock mass induces high convergences of the tunnel walls. These high convergence values are incompatible with the supports structural performance installed in the excavation stabilization. In this article it is intended to evaluate and analyze some of the solutions already implemented in several similar geological and geotechnical situations, in order to establish a methodological principle for the design of the tunnels included in a highway section under construction in the region influenced by the Himalayas, in the state of Himachal Pradesh (India) and referenced by "four laning of Kiratpur to Ner Chowk section".
Resumo:
15th International Conference on Mixed Design of Integrated Circuits and Systems, pp. 177 – 180, Poznan, Polónia